留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有限元仿真技术在刀具磨损研究中的应用

朱锐 徐增丙 王志刚

朱锐, 徐增丙, 王志刚. 有限元仿真技术在刀具磨损研究中的应用[J]. 机械科学与技术, 2019, 38(9): 1465-1469. doi: 10.13433/j.cnki.1003-8728.20190001
引用本文: 朱锐, 徐增丙, 王志刚. 有限元仿真技术在刀具磨损研究中的应用[J]. 机械科学与技术, 2019, 38(9): 1465-1469. doi: 10.13433/j.cnki.1003-8728.20190001
Zhu Rui, Xu Zengbing, Wang Zhigang. Application of Finite Element Simulation Technique in Cutting Tool Wear[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(9): 1465-1469. doi: 10.13433/j.cnki.1003-8728.20190001
Citation: Zhu Rui, Xu Zengbing, Wang Zhigang. Application of Finite Element Simulation Technique in Cutting Tool Wear[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(9): 1465-1469. doi: 10.13433/j.cnki.1003-8728.20190001

有限元仿真技术在刀具磨损研究中的应用

doi: 10.13433/j.cnki.1003-8728.20190001
基金项目: 

国家自然科学基金项目 51775391

详细信息
    作者简介:

    朱锐(1990-), 硕士研究生, 研究方向为有限元仿真分析/机电产品仿真分析, 18518670609@163.com

    通讯作者:

    徐增丙, 副教授, 博士, 15971280965@163.com

  • 中图分类号: TG501

Application of Finite Element Simulation Technique in Cutting Tool Wear

  • 摘要: 采用有限元仿真的方法对刀具磨损进行研究,不仅可以全面获得切削过程中的各项参数,而且具有成本低、效率高等优点;分析了有限元技术在刀具磨损应用中的关键技术,包括材料的本构模型、接触类型和摩擦模型、磨损模型和磨损计算、ALE网格技术、分离准则和断裂准则,分析了目前研究存在的问题,并提出未来的发展方向,对于推动有限元技术在刀具磨损中的应用具有指导意义。
  • 图  1  单元删除法原理[10]

    图  2  模拟磨损的流程[12]

    图  3  Usui磨损模型仿真结果[14]

  • [1] 陈永鹏, 曹华军, 杨潇.高速干切滚齿工艺滚刀切削刃载荷分布特性研究[J].机械工程学报, 2017, 53(15):181-187 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201715021

    Chen Y P, Cao H J, Yang X. Research on load distribution characteristic on the cutting edge in high speed gear hobbing process[J]. Journal of Mechanical Engineering, 2017, 53(15):181-187(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201715021
    [2] Ma J F, Duong N H, Lei S T. Finite element investigation of friction and wear of microgrooved cutting tool in dry machining of AISI 1045 steel[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2015, 229(4):449-464 doi: 10.1177/1350650114556395
    [3] 彭臣西, 吴运新, 易守华, 等.基于J-C本构模型的7050铝合金二维切削仿真[J].制造业自动化, 2018, 40(8):79-83 doi: 10.3969/j.issn.1009-0134.2018.08.021

    Peng C X, Wu Y X, Yi S H, et al. Two-dimensional cutting simulation of 7050 aluminum alloy based on J-C constitutive model[J]. Manufacturing Automation, 2018, 40(8):79-83(in Chinese) doi: 10.3969/j.issn.1009-0134.2018.08.021
    [4] Arrazola P J, Özel T. Investigations on the effects of friction modeling in finite element simulation of machining[J]. International Journal of Mechanical Sciences, 2010, 52(1):31-42 doi: 10.1016/j.ijmecsci.2009.10.001
    [5] Carroll Ⅲ J T, Strenkowski J S. Finite element models of orthogonal cutting with application to single point diamond turning[J]. International Journal of Mechanical Sciences, 1988, 30(12):899-920 doi: 10.1016/0020-7403(88)90073-2
    [6] Hosseinkhani K, Ng E. A hybrid experimental and simulation approach to evaluate the calibration of tool wear rate models in machining[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(5-8):2709-2724 doi: 10.1007/s00170-018-1687-5
    [7] 程耀楠, 聂婉莹, 贾炜坤, 等.损伤力学在重型切削硬质合金刀具失效分析中的应用探讨[J].制造技术与机床, 2018(5):49-55 http://d.old.wanfangdata.com.cn/Periodical/zzjsyjc201805021

    Cheng Y N, Nie W Y, Jia W K, et al. Application discussion on damage mechanics in failure analysis of cemented carbide tool of heavy cutting[J]. Manufacturing Technology & Machine Tool, 2018(5):49-55(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zzjsyjc201805021
    [8] 姚淑卿, 邢书明, 邓建新.Al2O3基陶瓷刀具材料摩擦磨损特性及其有限元分析[J].摩擦学学报, 2006, 26(6):566-569 doi: 10.3321/j.issn:1004-0595.2006.06.013

    Yao S Q, Xing S M, Deng J X. Behaviors of friction and wear and finite element analysis of three ceramic tool materials[J]. Tribology, 2006, 26(6):566-569(in Chinese) doi: 10.3321/j.issn:1004-0595.2006.06.013
    [9] 史方.Ti6Al14V的高速切削加工的有限元分析及摩擦模型的研究[D].昆明: 昆明理工大学, 2017: 32-35 http://cdmd.cnki.com.cn/Article/CDMD-10674-1017112060.htm

    Shi F. Finite element analysis and friction model of Ti6Al4V high speed machining[D]. Kunming: Kunming University of Science and Technology, 2017: 32-35(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10674-1017112060.htm
    [10] Kagnaya T, Lambert L, Lazard M, et al. Investigation and FEA-based simulation of tool wear geometry and metal oxide effect on cutting process variables[J]. Simulation Modelling Practice and Theory, 2014, 42:84-97 doi: 10.1016/j.simpat.2013.12.009
    [11] 程耀楠, 韩禹, 关睿, 等.高强钢高效加工层切面铣刀优化设计及仿真分析[J].上海交通大学学报, 2017, 51(8):1006-1012 http://d.old.wanfangdata.com.cn/Periodical/shjtdxxb201708016

    Cheng Y N, Han Y, Guan R, et al. Optimum design and simulation analysis of slice cutter for high-efficient machining with high strength steel[J]. Journal of Shanghai Jiaotong University, 2017, 51(8):1006-1012(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/shjtdxxb201708016
    [12] Binder M, Klocke F, Lung D. Tool wear simulation of complex shaped coated cutting tools[J]. Wear, 2015, 330-331:600-607 doi: 10.1016/j.wear.2015.01.015
    [13] 王霄, 卢树斌, 高传玉.高速金属切削的摩擦分析及有限元模拟[J].润滑与密封, 2007, 32(1):129-131 doi: 10.3969/j.issn.0254-0150.2007.01.040

    Wang X, Lu S B, Gao C Y. Friction analysis and finite element simulations of high-speed metal cutting[J]. Lubrication Engineering, 2007, 32(1):129-131(in Chinese) doi: 10.3969/j.issn.0254-0150.2007.01.040
    [14] Lotfi M, Jahanbakhsh M, Farid A A. Wear estimation of ceramic and coated carbide tools in turning of Inconel 625:3D FE analysis[J]. Tribology International, 2016, 99:107-116 doi: 10.1016/j.triboint.2016.03.008
    [15] Cha W G, Hammer T, Gutknecht F, et al. Adaptive wear model for shear-cutting simulation with open cutting line[J]. Wear, 2017, 386-387:17-28 doi: 10.1016/j.wear.2017.05.019
    [16] Takeyama H, Murata R. Basic investigation of tool wear[J]. Journal of Engineering for Industry, 1963, 85(1):33 doi: 10.1115/1.3667575
    [17] Usui E, Maekawa K, Shirakashi T. Simulation analysis of the built-up edge formation in maching of low carbon steel[J]. Bulletin of the Japan Society Precision Engineering, 1981, 15(4):237-242
    [18] Iwata K, Osakada K, Terasaka Y. Process modeling of orthogonal cutting by the rigid-plastic finite element method[J]. Journal of Engineering Materials and Technology, 1984, 106(2):132-138 doi: 10.1115/1.3225687
    [19] Cockcroft M G, Latham D J. Ductility and the workability of metals[J]. Journal Institute of Metals, 1968, 96(1):33-39
    [20] Lin Z C, Lai W L, Lin H Y, et al. The study of ultra-precision machining and residual stress for NiP alloy with different cutting speeds and depth of cut[J]. Journal of Materials Processing Technology, 2000, 97(1-3):200-210 doi: 10.1016/S0924-0136(99)00373-8
  • 加载中
图(3)
计量
  • 文章访问数:  575
  • HTML全文浏览量:  481
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-16
  • 刊出日期:  2019-09-05

目录

    /

    返回文章
    返回