留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔透气材料应用于船模微气泡减阻性能实验分析

张天行 朱汉华

张天行, 朱汉华. 多孔透气材料应用于船模微气泡减阻性能实验分析[J]. 机械科学与技术, 2019, 38(5): 783-788. doi: 10.13433/j.cnki.1003-8728.20180316
引用本文: 张天行, 朱汉华. 多孔透气材料应用于船模微气泡减阻性能实验分析[J]. 机械科学与技术, 2019, 38(5): 783-788. doi: 10.13433/j.cnki.1003-8728.20180316
Zhang Tianxing, Zhu Hanhua. Experimental Study on Microbubble Drag Reduction Performance of Porous Gas Permeable Material Applied to Ship Model[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(5): 783-788. doi: 10.13433/j.cnki.1003-8728.20180316
Citation: Zhang Tianxing, Zhu Hanhua. Experimental Study on Microbubble Drag Reduction Performance of Porous Gas Permeable Material Applied to Ship Model[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(5): 783-788. doi: 10.13433/j.cnki.1003-8728.20180316

多孔透气材料应用于船模微气泡减阻性能实验分析

doi: 10.13433/j.cnki.1003-8728.20180316
基金项目: 

国家创新创业训练计划基金项目 20171049705006

详细信息
    作者简介:

    张天行(1998-), 本科生, 研究方向为船舶工程、流体机械, tx98413@163.com

  • 中图分类号: U661.3

Experimental Study on Microbubble Drag Reduction Performance of Porous Gas Permeable Material Applied to Ship Model

  • 摘要: 分别将挠性氧化铝多孔透气材料安装在船模底部、侧面、球鼻艏附近进行微气泡减阻性能试验,分析应用于船模上的减阻效果。结果表明:船底喷气时,最高达11.6%的减阻效果;喷气位置位于球鼻艏附近时的减阻效果较差,只有当喷气流量为10 L/min时,船模阻力在部分试验点小于未喷气时的阻力;喷气位置位于船侧时,由于流场边界层密度改变较大,因此,减阻效果随着船模速度与喷气流量变化波动较大。当船模速度为1.80 m/s,且船底和船侧空气流量为20 L/min、球鼻艏空气流量为10 L/min时,采用多孔透气材料船底+船侧+球鼻艏组合式喷气方式的微气泡减阻效果可达13.9%,减阻效果明显,验证了多孔透气材料应用于船模微气泡减阻的优良性。
  • 图  1  铺设多孔透气材料的船模

    图  2  铺设透气材前后船模阻力变化

    图  3  船模底部喷气时的减阻效果

    图  4  船模底部微气泡分布图

    图  5  减阻效果随无因次参数Cv的变化趋势

    图  6  球鼻艏喷气减阻实验结果

    图  7  微气泡分布图

    图  8  船侧喷气减阻效果

    图  9  不同喷气组合方式下的船模减阻效果

    表  1  实船与船模基本尺寸

    参数 实船 船模
    船长/m 164.900 6.246
    载重水线长/m 161.568 6.120
    船宽/m 27.900 1.057
    浸水面积/m2 5 795 8.314
    螺旋桨直径/m 8.500 0.322
    下载: 导出CSV
  • [1] 胡以怀, 李慧晶, 何浩.国内外船舶气泡减阻技术的研究与应用[J].船舶与海洋工程, 2017, 33(6):1-6 http://d.old.wanfangdata.com.cn/Periodical/shzc201706001

    Hu Y H, Li H J, He H. Research and application of ship's bubble drag reduction technologies at home and abroad[J]. Naval Architecture and Ocean Engineering, 2017, 33(6):1-6 (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/shzc201706001
    [2] Kumagai I, Takahashi Y, Murai Y. Power-saving device for air bubble generation using a hydrofoil to reduce ship drag: theory, experiments, and application to ships[J]. Ocean Engineering, 2015, 95:183-194 doi: 10.1016/j.oceaneng.2014.11.019
    [3] Murai Y. Frictional drag reduction by bubble injection[J]. Experiments in Fluids, 2014, 55:1773 doi: 10.1007/s00348-014-1773-x
    [4] Qin S J, Chu N, Yao Y, et al. Stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection[J]. Physics of Fluids, 2017, 29(3):037103 doi: 10.1063/1.4977800
    [5] Pang M J, Zhang Z. Numerical investigation on turbulence drag reduction by small bubbles in horizontal channel with mixture model combined with population balance model[J]. Ocean Engineering, 2018, 162:80-97 doi: 10.1016/j.oceaneng.2018.05.034
    [6] 王家楣, 蔡成法.船模摩擦阻力的一种测试方法及结果[J].武汉理工大学学报:交通科学与工程版, 2003, 27(1):4-6 http://d.old.wanfangdata.com.cn/Periodical/whjtkjdxxb200301002

    Wang J M, Cai C F. A testing method and results of friction resistance of ship model[J]. Journal of Wuhan University of Technology: Transportation Science & Engineering, 2003, 27(1):4-6 (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/whjtkjdxxb200301002
    [7] 王家楣, 郑晓伟, 姜曼松.船舶吃水对微气泡减阻影响的水池试验研究[J].船舶工程, 2004, 26(6):9-12 doi: 10.3969/j.issn.1000-6982.2004.06.003

    Wang J M, Zheng X W, Jiang M S. Test research on drag reduction of ship model at different draft by microbubble in towing basin[J]. Ship Engineering, 2004, 26(6):9-12 (in Chinese) doi: 10.3969/j.issn.1000-6982.2004.06.003
    [8] 王家楣, 张玲.过渡型艇微气泡减阻喷缝尺度影响数值计算[J].船舶力学, 2011, 15(6):592-597 doi: 10.3969/j.issn.1007-7294.2011.06.002

    Wang J M, Zhang L. Numerical calculation on the influence of the slot size of air injection on micro bubbles drag reduction for transitional craft[J]. Journal of Ship Mechanics, 2011, 15(6):592-597 (in Chinese) doi: 10.3969/j.issn.1007-7294.2011.06.002
    [9] 黄衍顺, 张丽君, 王震.微气泡层减阻的边界层模型计算[J].船舶工程, 2004, 26(1):13-16 doi: 10.3969/j.issn.1000-6982.2004.01.004

    Huang Y S, Zhang L J, Wang Z. Calculation of microbubble sheet drag reduction by a model of boundary layer[J]. Ship Engineering, 2004, 26(1):13-16 (in Chinese) doi: 10.3969/j.issn.1000-6982.2004.01.004
    [10] 黄衍顺, 王震, 王吉强.通过微气泡控制湍流边界层减阻的研究与进展[J].船舶工程, 2003, 25(1):1-5 doi: 10.3969/j.issn.1000-6982.2003.01.001

    Huang Y S, Wang Z, Wang J Q. Trends in research of drag reduction by micro-bubbles controlling turbulent boundary layer[J]. Ship Engineering, 2003, 25(1):1-5 (in Chinese) doi: 10.3969/j.issn.1000-6982.2003.01.001
    [11] Han D F, Li Y B, Huang D B. Study of algorithms of new slender ship theory of wave resistance[J]. Journal of Marine Science and Application, 2003, 2(2):53-60 doi: 10.1007/BF02918664
    [12] 李勇.船舶微气泡减阻机理研究[D].哈尔滨: 哈尔滨工程大学, 2011 http://cdmd.cnki.com.cn/Article/CDMD-10217-1012264434.htm

    Li Y. Mechanism research on drag reduction of ship by microbubbles[D]. Harbin: Harbin Engineering University, 2011 (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10217-1012264434.htm
    [13] Madavan N K, Deutsch S, Merkle C L. Reduction of turbulent skin friction by microbubbles[J]. The Physics of Fluids, 1984, 27(2):356-363 https://www.researchgate.net/publication/235068547_Reduction_of_Turbulent_Skin_Friction_by_Microbubbles
    [14] Yanuar, Waskito K T, Pratama S Y, et al. Comparison of microbubble and air layer injection with porous media for drag reduction on a self-propelled barge ship model[J]. Journal of Marine Science and Application, 2018, 17(2):165-172 http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb-e201802002
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  197
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-09
  • 刊出日期:  2019-05-05

目录

    /

    返回文章
    返回