留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单向碳纤维复合材料界面力学性能测试研究

张立峰 王盛 乔伟林 李战 甄婷婷 王映

张立峰, 王盛, 乔伟林, 李战, 甄婷婷, 王映. 单向碳纤维复合材料界面力学性能测试研究[J]. 机械科学与技术, 2019, 38(8): 1296-1300. doi: 10.13433/j.cnki.1003-8728.20180310
引用本文: 张立峰, 王盛, 乔伟林, 李战, 甄婷婷, 王映. 单向碳纤维复合材料界面力学性能测试研究[J]. 机械科学与技术, 2019, 38(8): 1296-1300. doi: 10.13433/j.cnki.1003-8728.20180310
Zhang Lifeng, Wang Sheng, Qiao Weilin, Li Zhan, Zhen Tingting, Wang Ying. Experimental Study on Interface Mechanical Properties of Unidirectional Carbon Fiber Composites[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(8): 1296-1300. doi: 10.13433/j.cnki.1003-8728.20180310
Citation: Zhang Lifeng, Wang Sheng, Qiao Weilin, Li Zhan, Zhen Tingting, Wang Ying. Experimental Study on Interface Mechanical Properties of Unidirectional Carbon Fiber Composites[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(8): 1296-1300. doi: 10.13433/j.cnki.1003-8728.20180310

单向碳纤维复合材料界面力学性能测试研究

doi: 10.13433/j.cnki.1003-8728.20180310
基金项目: 

中央高校基本科研业务费项目中国民航大学专项项目 3122018C007

详细信息
    作者简介:

    张立峰(1983-)讲师, 博士, 研究方向为复合材料界面力学, 复合材料加工, zhanglifeng@tju.edu.cn

  • 中图分类号: TB332

Experimental Study on Interface Mechanical Properties of Unidirectional Carbon Fiber Composites

  • 摘要: 编织陶瓷基复合材料由于复杂的纤维编织结构,其界面力学性能测试与表征较困难。为了研究编织复合材料的界面力学性能,探明应力作用下的界面失效机制,本文设计并制备了单向模型复合材料,开展相关单纤维压出的微纳实验。结果表明,C/SiC采用PyC界面时,其界面剪切强度约为35 MPa。通过对纤维的压出过程进行分析,揭示了载荷作用下的裂纹萌生及扩展规律。课题研究不仅对拓展复合材料的应用具有重要的经济意义,而且可为复合材料界面力学与断裂力学的研究提供一定的理论和实验支撑。
  • 图  1  单向陶瓷基复合材料C/SiC制备过程原理图

    图  2  单向C/PyC/SiC复合材料显微形貌图

    图  3  单纤维压出实验原理图

    图  4  典型的压头位移-载荷曲线

    图  5  单纤维压出试验效果图

    图  6  试件厚度对界面强度测试的影响

    表  1  T300型碳纤维力学性能参数表

    参数名称 数值及单位
    径向杨氏模量/GPa 15
    轴向杨氏模量/GPa 230
    轴向剪切模量/GPa 27
    径向剪切模量/GPa 7
    轴向泊松比 0.013
    纤维直径/μm 3.5
    径向热膨胀系数/(℃-1) 12×10-6
    轴向热膨胀系数/(℃-1) -0.7×10-6
    下载: 导出CSV

    表  2  纤维压出试验方案参数表

    类型 实验参数
    压入仪器 Nano Indenter G200
    加载方式 静态加载
    控制方式 载荷控制
    最大载荷 100 mN
    加载速度 0.2 mN/s
    卸载速度 100 nm/s
    压头种类 Berkovich三棱锥金刚石压头
    试验种类 I纤维压出
    试件厚度 50, 60, 70, 80, 90, 100 μm
    下载: 导出CSV
  • [1] 王晶, 成来飞, 刘永胜, 等.碳化硅陶瓷基复合材料加工技术研究进展[J].航空制造技术, 2016(15):50-56 http://d.old.wanfangdata.com.cn/Periodical/hkgyjs201615006

    Wang J, Cheng L F, Liu Y S, et al. Research development on processing technology of silicon carbide ceramic matrix composites[J]. Aeronautical Manufacturing Technology, 2016(15):50-56(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkgyjs201615006
    [2] 张立同, 成来飞.连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J].复合材料学报, 2007, 24(2):1-6 doi: 10.3321/j.issn:1000-3851.2007.02.001

    Zhang L T, Cheng L F. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2007, 24(2):1-6(in Chinese) doi: 10.3321/j.issn:1000-3851.2007.02.001
    [3] 刘杰, 李海滨, 张小彦, 等.2D-C/SiC高速深磨磨削特性及去除机制[J].复合材料学报, 2012, 29(4):113-118 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fhclxb201204019

    Liu J, LI H B, Zhang X Y, et al. Investigation of grinding characteristics and removal mechanisms of 2D-C/SiC in high speed deep grinding[J]. Acta Materiae Compositae Sinica, 2012, 29(4):113-118(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fhclxb201204019
    [4] 姚磊江, 王梦, 陈刘定, 等.初始缺陷对平纹编织C/SiC复合材料热膨胀系数的影响[J].机械科学与技术, 2015, 34(2):311-314 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxkxyjs201502032

    Yao L J, Wang M, Chen L D, et al. Effect of the initial defects on the thermal expansion coefficients of plain weave C/SiC composite[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(2):311-314(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxkxyjs201502032
    [5] 吕毅, 张伟, 吕鹏.界面层对C/SiC复合材料热残余应力影响的模拟及分析[J].机械科学与技术, 2018, 37(6):949-956 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxkxyjs201806022

    Lü Y, Zhang W, Lü P. Simulation and analysis of influence of interface on thermal residual stress of C/SiC composites[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(6):949-956(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxkxyjs201806022
    [6] 于长清, 裴雨辰, 陈利.界面涂层对碳纤维增强锂铝硅玻璃陶瓷复合材料力学性能影响的研究[J].硅酸盐通报, 2018, 37(2):677-681 http://d.old.wanfangdata.com.cn/Periodical/gsytb201802049

    Yu C Q, Pei Y C, Chen L. Effect of carbon fiber coating on the mechanical properties of carbon fiber reinforced lithium aluminosilicate composites[J]. Bulletin of The Chinese Ceramic Society, 2018, 37(2):677-681(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gsytb201802049
    [7] 付豪, 陈俊林, 王凯, 等.热处理对碳纤维/聚酰胺6复合材料界面结晶及力学性能的影响[J].复合材料学报, 2018, 35(4):815-822 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fhclxb201804009

    Fu H, Chen J L, Wang K, et al. Effects of heat treatments on the interfacial crystallization and mechanical properties of carbon fiber/polyamide 6 composites[J]. Acta Materiae Compositae Sinica, 2018, 35(4):815-822(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fhclxb201804009
    [8] Wang X J, Xu D X, Liu H Y, et al. Effects of thermal residual stress on interfacial properties of polyphenylene sulphide/carbon fibre (PPS/CF) composite by microbond test[J]. Journal of Materials Science, 2016, 51(1):334-343 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8b8fa5c31827bb815dd8172301ebe462
    [9] Parlevliet P P, Bersee H E N, Beukers A. Residual stresses in thermoplastic composites-a study of the literature. Part Ⅲ:Effects of thermal residual stresses[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(6):1581-1596 doi: 10.1016/j.compositesa.2006.12.005
    [10] Parlevliet P P, Bersee H E N, Beukers A. Residual stresses in thermoplastic composites-A study of the literature-Part Ⅰ:Formation of residual stresses[J]. Composites Part A:Applied Science and Manufacturing, 2006, 37(11):1847-1857 doi: 10.1016/j.compositesa.2005.12.025
    [11] Yang L, Thomason J L, Zhu W. The influence of thermo-oxidative degradation on the measured interface strength of glass fibre-polypropylene[J]. Composites Part A:Applied Science and Manufacturing, 2011, 42(10):1293-1300 doi: 10.1016/j.compositesa.2011.05.011
    [12] Rollin M, Jouannigot S, Lamon J, et al. Characterization of fibre/matrix interfaces in carbon/carbon composites[J]. Composites Science and Technology, 2009, 69(9):1442-1446 doi: 10.1016/j.compscitech.2008.09.023
    [13] Mueller W M, Moosburger-Will J, Sause M G R, et al. Microscopic analysis of single-fiber push-out tests on ceramic matrix composites performed with Berkovich and flat-end indenter and evaluation of interfacial fracture toughness[J]. Journal of the European Ceramic Society, 2013, 33(2):441-451 doi: 10.1016/j.jeurceramsoc.2012.09.009
    [14] Battisti A, Esqué-de los Ojos D, Ghisleni R, et al. Single fiber push-out characterization of interfacial properties of hierarchical CNT-carbon fiber composites prepared by electrophoretic deposition[J]. Composites Science and Technology, 2014, 95:121-127 doi: 10.1016/j.compscitech.2014.02.017
    [15] Goto K, Kawahara I, Hatta H, et al. Measurement of fiber/matrix interface properties of C/C composites by single fiber and fiber bundle push-out methods[J]. Composite Interfaces, 2005, 12(7):603-616 doi: 10.1163/156855405774327894
    [16] Hatta H, Goto K, Ikegaki S, et al. Tensile strength and fiber/matrix interfacial properties of 2D-and 3D-carbon/carbon composites[J]. Journal of the European Ceramic Society, 2005, 25(4):535-542 doi: 10.1016/j.jeurceramsoc.2004.02.014
    [17] Long Y, Javed A, Zhao Y, et al. Fiber/matrix interfacial shear strength of C/C composites with PyC-TaC-PyC and PyC-SiC-TaC-PyC multi-interlayers[J]. Ceramics International, 2013, 39(6):6489-6496 doi: 10.1016/j.ceramint.2013.01.080
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  388
  • HTML全文浏览量:  338
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-21
  • 刊出日期:  2019-08-05

目录

    /

    返回文章
    返回