留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温变工况下的EMI螺栓松动损伤识别

詹阳磊 肖黎 屈文忠

詹阳磊, 肖黎, 屈文忠. 温变工况下的EMI螺栓松动损伤识别[J]. 机械科学与技术, 2019, 38(6): 821-827. doi: 10.13433/j.cnki.1003-8728.20180247
引用本文: 詹阳磊, 肖黎, 屈文忠. 温变工况下的EMI螺栓松动损伤识别[J]. 机械科学与技术, 2019, 38(6): 821-827. doi: 10.13433/j.cnki.1003-8728.20180247
Yanglei Zhan, Li Xiao, Wenzhong Qu. Detection of Bolt Looseness Damage under Changing Temperature Condition by using EMI Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(6): 821-827. doi: 10.13433/j.cnki.1003-8728.20180247
Citation: Yanglei Zhan, Li Xiao, Wenzhong Qu. Detection of Bolt Looseness Damage under Changing Temperature Condition by using EMI Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(6): 821-827. doi: 10.13433/j.cnki.1003-8728.20180247

温变工况下的EMI螺栓松动损伤识别

doi: 10.13433/j.cnki.1003-8728.20180247
基金项目: 

国家自然科学基金项目 51378402

详细信息
    作者简介:

    詹阳磊(1994-), 硕士研究生, 研究方向为结构健康监测, yangleizhan@whu.edu.cn

    通讯作者:

    肖黎, 副教授, 硕士生导师, 博士, 00011966@whu.edu.cn

  • 中图分类号: TN384

Detection of Bolt Looseness Damage under Changing Temperature Condition by using EMI Method

  • 摘要: 环境温度变化易引起机电阻抗方法(EMI)结构健康监测的损伤误报,以螺栓组连接的铝板为对象,分别进行了温度对导纳信号的影响实验及温变工况下的螺栓松动损伤识别实验,采用平均绝对偏差与相关系数偏差量化表征导纳信号改变程度,利用信号互相关迭代算法分段补偿温度影响。结果表明,温度变化引起导纳信号的水平偏移,且偏移量随频率与温差的增加而增大,引起损伤指标变化,影响螺栓连接状态判定。通过迭代算法进行温度补偿后,极大程度消除了温度影响,有效提高了螺栓松动损伤识别的敏感程度,避免温度变化引起损伤误报。
  • 图  1  一维机电耦合阻抗模型

    图  2  实验装置示意图

    图  3  温度变化引起的频率偏移现象

    图  4  各工况下的损伤指标柱状图

    图  5  T3工况40~45 kHz补偿后的导纳频谱图

    图  6  温度补偿算法对各工况相应子频率段CCDM指标的影响

    图  7  温度补偿算法对健康与损伤工况下标准CCDM指标的影响

    表  1  6种工况下的温度设置与螺栓连接状态

    T1 T2 T3 L1 L2 L3
    25 ℃螺栓全紧 30 ℃螺栓全紧 35 ℃螺栓全紧 20 ℃螺栓1松 20 ℃螺栓1、2松 20 ℃螺栓全松
    下载: 导出CSV

    表  2  典型局部共振峰受温度影响产生的频率偏移量

    温度差/℃ 频率偏移量/Hz
    峰值43 250 Hz 峰值46 720 Hz 峰值51 410 Hz 峰值56 700 Hz 峰值59 680 Hz
    5 50 60 70 80 90
    10 110 120 130 140 160
    15 170 190 210 230 260
    下载: 导出CSV

    表  3  5种工况下的温度设置与螺栓连接状态

    T L1 L2 L3 L4
    36 ℃螺栓全紧 36 ℃螺栓1松 36 ℃螺栓2松 36 ℃螺栓3松 36 ℃螺栓全松
    下载: 导出CSV

    表  4  温度补偿前后不同频率段内导纳信号螺栓松动损伤识别结果

    频率区间/kHz 原始信号 温度补偿后信号
    40~45 L1~L4
    45~49 L4 L1~L4
    49~52 L4 L1~L4
    52~57 L2L4 L1~L4
    57~60 L2L4 L1~L4
    下载: 导出CSV
  • [1] 闫航瑞, 曾国英, 赵登峰, 等.基于小波分析的螺栓联接松动故障诊断[J].机械科学与技术, 2012, 31(7):1110-1114 http://journals.nwpu.edu.cn/jxkxyjs/CN/abstract/abstract5638.shtml

    Yan H R, Zeng G Y, Zhao D F, et al. Fault diagnosis of the attachment bolt looseness based on wavelet analysis[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(7):1110-1114(in Chinese) http://journals.nwpu.edu.cn/jxkxyjs/CN/abstract/abstract5638.shtml
    [2] Liang C, Sun F P, Rogers C A. Coupled electro- mechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer[J]. Journal of Intelligent Material Systems and Structures, 1994, 5(1):12-20 doi: 10.1177/1045389X9400500102
    [3] 魏汉, 王强, 惠德昌, 等.压电机电阻抗结构损伤监测机理研究[J].压电与声光, 2014, 36(4):667-670 doi: 10.3969/j.issn.1004-2474.2014.04.046

    Wei H, Wang Q, Hui D C, et al. Study on damage monitoring mechanism of piezoelectric impedance structure[J]. Piezoelectrics and Acoustooptics, 2014, 36(4):667-670(in Chinese) doi: 10.3969/j.issn.1004-2474.2014.04.046
    [4] Huo L S, Chen D D, Liang Y B, et al. Impedance based bolt pre-load monitoring using piezoceramic smart washer[J]. Smart Materials and Structures, 2017, 26(5):057004 doi: 10.1088/1361-665X/aa6a8e
    [5] Park G, Kabeya K, Cudney H H, et al. Impedance-based structural health monitoring for temperature varying applications[J]. JSME International Journal Series A, 1999, 42(2):249-258 doi: 10.1299/jsmea.42.249
    [6] Bastani A, Amindavar H, Shamshirsaz M, et al. Identification of temperature variation and vibration disturbance in impedance-based structural health monitoring using piezoelectric sensor array method[J]. Structural Health Monitoring, 2011, 11(3):305-314 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b116e3c4704c2ed6de465f714a9c687b
    [7] Baptista F G, Filho J V, Inman D J. Real-time multi-sensors measurement system with temperature effects compensation for impedance-based structural health monitoring[J]. Structural Health Monitoring, 2012, 11(2):173-186 doi: 10.1177/1475921711414234
    [8] 杨景文, 朱宏平, 王丹生, 等.基于EMI损伤检测技术的温度补偿研究[J].土木工程与管理学报, 2014, 31(3):7-11, 33 doi: 10.3969/j.issn.2095-0985.2014.03.002

    Yang J W, Zhu H P, Wang D S, et al. Temperature compensation research of damage detection technology based on EMI method[J]. Journal of Civil Engineering and Management, 2014, 31(3):7-11, 33(in Chinese) doi: 10.3969/j.issn.2095-0985.2014.03.002
    [9] Xu D Y, Banerjee S, Wang Y B, et al. Temperature and loading effects of embedded smart piezoelectric sensor for health monitoring of concrete structures[J]. Construction and Building Materials, 2015, 76:187-193 doi: 10.1016/j.conbuildmat.2014.11.067
    [10] Sun F P, Chaudhry Z A, Rogers C A, et al. Automated real-time structure health monitoring via signature pattern recognition[J]. Proceedings of SPIE, 1995, 2443:236-247 doi: 10.1117/12.208261
    [11] Baptista F G, Budoya D E, de Almeida V A D, et al. An experimental study on the effect of temperature on piezoelectric sensors for impedance-based structural health monitoring[J]. Sensors, 2014, 14(1):1208-1227 doi: 10.3390/s140101208
    [12] Wandowski T, Malinowski P H, Ostachowicz W M. Delamination detection in CFRP panels using EMI method with temperature compensation[J]. Composite Structures, 2016, 151:99-107 doi: 10.1016/j.compstruct.2016.02.056
    [13] 朱宏平, 王丹生, 张俊兵.基于压电阻抗技术的结构损伤识别基本理论及其应用[J].工程力学, 2008, 25(S2):34-43 http://d.old.wanfangdata.com.cn/Conference/6721795

    Zhu H P, Wang D S, Zhang J B, et al. Theory and application of structure damage detection based on piezoelectric impedance technique[J]. Engineering Mechanics, 2008, 25(S2):34-43(in Chinese) http://d.old.wanfangdata.com.cn/Conference/6721795
    [14] Liang C, Sun F P, Rogers C A. An impedance method for dynamic analysis of active material systems[J]. Journal of Intelligent Material Systems and Structures, 1997, 8(4):323-334 doi: 10.1177/1045389X9700800405
    [15] Baptista F G, Filho J V. Transducer loading effect on the performance of PZT-based SHM systems[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(4):933-941 doi: 10.1109/TUFFC.2010.1497
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  332
  • HTML全文浏览量:  166
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-21
  • 刊出日期:  2019-06-05

目录

    /

    返回文章
    返回