留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

E319铸铝合金热机械疲劳行为研究

钱春华 崔海涛 高超

钱春华, 崔海涛, 高超. E319铸铝合金热机械疲劳行为研究[J]. 机械科学与技术, 2019, 38(4): 634-638. doi: 10.13433/j.cnki.1003-8728.20180203
引用本文: 钱春华, 崔海涛, 高超. E319铸铝合金热机械疲劳行为研究[J]. 机械科学与技术, 2019, 38(4): 634-638. doi: 10.13433/j.cnki.1003-8728.20180203
Qian Chunhua, Cui Haitao, Gao Chao. Study on Thermo-mechanical Fatigue Behavior of E319 Cast Aluminum Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(4): 634-638. doi: 10.13433/j.cnki.1003-8728.20180203
Citation: Qian Chunhua, Cui Haitao, Gao Chao. Study on Thermo-mechanical Fatigue Behavior of E319 Cast Aluminum Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(4): 634-638. doi: 10.13433/j.cnki.1003-8728.20180203

E319铸铝合金热机械疲劳行为研究

doi: 10.13433/j.cnki.1003-8728.20180203
详细信息
    作者简介:

    钱春华(1984-), 博士研究生, 研究方向为金属的热机械疲劳, nuaaqch@163.com

    通讯作者:

    崔海涛, 教授, 博士, cuiht@nuaa.edu.cn

  • 中图分类号: TB302.3

Study on Thermo-mechanical Fatigue Behavior of E319 Cast Aluminum Alloy

  • 摘要: 对E319铸铝合金进行了等温疲劳及热机械疲劳试验研究,并对E319铸铝合金断口进行扫描电镜(SEM)分析。结果表明:热机械疲劳时E319铸铝合金的平均应力呈压应力。等温疲劳时断口为微孔聚集型断裂,热机械疲劳时断口表现为准解理断裂,热机械疲劳寿命远低于等温疲劳寿命。与镍基高温合金、钛铝合金相比,E319铸铝合金表现出不同的热机械疲劳循环应力应变特性和循环应力响应特性,由于温度和应力松弛的影响,迟滞回线的两端出现"弯勾"形状,并且在断裂前出现强烈的循环硬化行为。
  • 图  1  等温疲劳迟滞回线

    图  2  热机械疲劳迟滞回线

    图  3  镍基、钛铝合金热机械疲劳迟滞回线

    图  4  等温疲劳循环应力响应曲线

    图  5  热机械疲劳循环应力响应曲线

    图  6  镍基、钛铝合金热机械疲循环应力响应曲线

    图  7  等温疲劳(250 ℃)断口SEM图

    图  8  热机械疲劳断口SEM图

    表  1  E319铸铝合金的化学成分

    wt%
    成分 Si Cu Mg Fe Mn Sr Ti Al
    含量 7.35 3.32 0.22 0.78 0.24 0.03 0.13 Rest
    下载: 导出CSV

    表  2  等温疲劳试验结果

    频率/Hz 应变比 温度/℃ 应变幅/% 寿命 σmax/MPa σmin/MPa σm/MPa
    0.1 -1 100 0.3 2 624 175.279 -174.756 0.523
    250 2 031 176.028 -173.601 2.427
    下载: 导出CSV

    表  3  热机械疲劳试验结果

    周期/s 相位 试件编号 机械应变幅/% 寿命 σmax/MPa σmin/MPa σm/MPa
    240 同相位 1 0.3 288 104.161 -154.116 -24.998
    下载: 导出CSV
  • [1] Lu S Z, Hellawell A. The mechanism of silicon modification in aluminum-silicon alloys:impurity induced twinning[J]. Metallurgical Transactions A, 1987, 18(10):1721-1733 doi: 10.1007/BF02646204
    [2] 熊艳才, 刘伯操.铸造铝合金现状及未来发展[J].特种铸造及有色合金, 1998(4):1-5 http://d.old.wanfangdata.com.cn/Periodical/tzzzjyshj199804001

    Xiong Y C, Liu B C. Review and prospect of cast aluminum alloy[J]. Special Casting & Nonferrous Alloys, 1998(4):1-5(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/tzzzjyshj199804001
    [3] Franclois M, Rémy L. Thermal-mechanical fatigue of Mar-M 509 superalloy. Comparison with low-cycle fatigue behaviour[J]. Fatigue & Fracture of Engineering Materials & Structure, 1991, 14(1):115-129 doi: 10.1111/j.1460-2695.1991.tb00647.x/full
    [4] Shi H J, Korn C, Pluvinage G. High temperature isothermal and thermomechanical fatigue on a molybdenum-based alloy[J]. Materials Science and Engineering:A, 1998, 247(1-2):180-186 doi: 10.1016/S0921-5093(97)00763-6
    [5] Vasseur E, Rémy L. High temperature low cycle fatigue and thermal-mechanical fatigue behaviour of an oxide-dispersion-strengthened nickel-base superalloy[J]. Materials Science and Engineering:A, 1994, 184(1):1-15 doi: 10.1016/0921-5093(94)91069-3
    [6] Chen H, Chen W, Mukherji D, et al. Cyclic life of superalloy IN738LC under in-phase and out-phase thermomechanica fatigue loading[J]. Zeitschrift für Metallkunde, 1995, 86(6):423-427 http://www.ingentaconnect.com/content/els/01421123/1996/00000018/00000007/art82742
    [7] Beck T, Pitz G, Lang K H, et al. Thermal-mechanical and isothermal fatigue of IN 792 CC[J]. Materials Science and Engineering:A, 1997, 234-236:719-722 doi: 10.1016/S0921-5093(97)00281-5
    [8] 刘峰, 艾素华, 王跃臣, 等.K417铸造镍基高温合金热机械疲劳行为的研究[J].金属学报, 2001, 37(3):267-271 doi: 10.3321/j.issn:0412-1961.2001.03.010

    Liu F, Ai S H, Wang Y C, et al. Thermo-mechanical fatigue behavior of cast nickel-based superalloy K417[J]. Acta Metallurgica Sinica, 2001, 37(3):267-271(in Chinese) doi: 10.3321/j.issn:0412-1961.2001.03.010
    [9] 王跃臣, 李守新, 艾素华, 等.DD8单晶镍基高温合金的热机械疲劳[J].金属学报, 2003, 39(9):903-907 doi: 10.3321/j.issn:0412-1961.2003.09.002

    Wang Y C, Li S X, Ai S H, et al. Thermo-mechanical fatigue behaviours of DD8 single crystal nickel base superalloy[J]. Acta Metallurgica Sinica, 2003, 39(9):903-907(in Chinese) doi: 10.3321/j.issn:0412-1961.2003.09.002
    [10] Cui W F, Liu C M, Bauer V, et al. Thermomechanical fatigue behaviours of a third generation γ-TiAl based alloy[J]. Intermetallics, 2007, 15(5-6):675-678 doi: 10.1016/j.intermet.2006.10.027
    [11] Roth M, Biermann H. Thermomechanical fatigue behavior of the intermetallic γ-tial alloy TNB-V5 with different microstructures[J]. Metallurgical and Materials Transactions A, 2010, 41(3):717-726 doi: 10.1007/s11661-009-0119-4
    [12] Kang D G, Jhung M J, Chang S H. Fluid-structure interaction analysis for pressurizer surge line subjected to thermal stratification[J]. Nuclear Engineering and Design, 2011, 241(1):257-269 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=42a865ba25444ce3df669df0f9a9a321
    [13] Riccardella P C. Application of fatigue monitoring to the evaluation of pressurizer surge lines[R]. EPRI TR-100273. Palo Alto, CA: Electric Power Research Institute, 1992
    [14] Liu F, Wang Y C, Zhang H, et al. Evolutionary stress cycle behaviour and damage mechanisms in nickel based superalloy under thermomechanical fatigue[J]. Materials Science and Technology, 2003, 19(7):853-858 doi: 10.1179/026708303225010786
    [15] Pahlavanyali S, Rayment A, Roebuck B, et al. Thermo-mechanical fatigue testing of superalloys using miniature specimens[J]. International Journal of Fatigue, 2008, 30(2):397-403 doi: 10.1016/j.ijfatigue.2007.01.051
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  388
  • HTML全文浏览量:  204
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-20
  • 刊出日期:  2019-04-05

目录

    /

    返回文章
    返回