留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压痕轮廓信息在材料本构关系反演测量中的应用

闫鹏 郭伟超 李淑娟 李言

闫鹏, 郭伟超, 李淑娟, 李言. 压痕轮廓信息在材料本构关系反演测量中的应用[J]. 机械科学与技术, 2019, 38(4): 639-645. doi: 10.13433/j.cnki.1003-8728.20180199
引用本文: 闫鹏, 郭伟超, 李淑娟, 李言. 压痕轮廓信息在材料本构关系反演测量中的应用[J]. 机械科学与技术, 2019, 38(4): 639-645. doi: 10.13433/j.cnki.1003-8728.20180199
Yan Peng, Guo Weichao, Li Shujuan, Li Yan. Application of Residual Imprint Profile to Material Constitutive Relation in Identification Via Inverse Analysis[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(4): 639-645. doi: 10.13433/j.cnki.1003-8728.20180199
Citation: Yan Peng, Guo Weichao, Li Shujuan, Li Yan. Application of Residual Imprint Profile to Material Constitutive Relation in Identification Via Inverse Analysis[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(4): 639-645. doi: 10.13433/j.cnki.1003-8728.20180199

压痕轮廓信息在材料本构关系反演测量中的应用

doi: 10.13433/j.cnki.1003-8728.20180199
基金项目: 

国家自然科学基金项目 51505377

陕西留学人员科技活动择优项目 302/253081605

中国博士后科学基金会项目 2016M592821

陕西省自然科学基础研究计划项目 2017JM5102

详细信息
    作者简介:

    闫鹏(1993-), 硕士, 研究方向为纳米压痕技术, 530257805@qq.com

    通讯作者:

    郭伟超(1981-), 副教授, 硕士生导师, 博士, weichaoguo@xaut.edu.cn

  • 中图分类号: TG335.6

Application of Residual Imprint Profile to Material Constitutive Relation in Identification Via Inverse Analysis

  • 摘要: 金属材料的力学性能,如本构关系可以利用纳米压痕技术反演测量得到,但是测量结果存在不准确、不唯一的问题。为了解决该问题,本文中提出同时利用载荷-位移曲线和压痕轮廓信息来提高本构关系中材料参数的测量精度。利用ANSYS建立了纳米压痕数值模型,通过对比数值模拟和实验获得的载荷-位移曲线,验证了数值模拟的可行性和可靠性;反演测量需要优化迭代来缩小数值模拟与实验的差距,由于ANSYS在优化算法上存在不足,利用MATLAB强大的编程能力,编制了对应的优化求解算法,并且和ANSYS联合求解完成材料本构关系的反演测量。最后,通过实例证明引入压痕轮廓信息可以提高材料本构关系反演测量的准确性和唯一性。
  • 图  1  某种典型弹塑性材料的位移-载荷曲线

    图  2  金属弹塑性幂强化模型应力-应变关系

    图  3  纳米压痕轴对称模型

    图  4  数值模拟得到的数据与实验数据对比

    图  5  MATLAB和ANSYS联合优化方法流程图

    图  6  两种不同测试材料测试后获得的载荷-位移曲线

    图  7  两次反演测量迭代过程

    图  8  目标载荷-位移曲线与两次反演结果

    图  9  两种材料的压痕轮廓及反演结果

    表  1  实验与数值模拟结果及误差

    参数名称 实验值 模拟值 误差/%
    最大载荷/N 2.902 2.997 3.27
    最大压深/μm 10 9.860 1.4
    下载: 导出CSV

    表  2  材料反演识别目标值与反演结果及其误差

    名称 弹性模量/GPa 屈服强度/MPa 硬化系数
    材料1 100 500 0.0
    输入初值 58 190 0.35
    取值范围 30~210 30~800 0~0.5
    识别结果 101.56 493.29 0.003
    误差/% 1.56 1.34 <2
    材料2 110 295 0.2
    输入初值 58 190 0.35
    取值范围 30~210 30~800 0~0.5
    识别结果 108.24 294.08 0.204
    误差/% 1.44 0.03 2
    下载: 导出CSV
  • [1] 李安海, 赵军, 罗汉兵, 等.高速干铣削钛合金时涂层硬质合金刀具磨损机理研究[J].摩擦学学报, 2012, 32(1):40-46 http://d.old.wanfangdata.com.cn/Periodical/mcxxb201201007

    Li A H, Zhao J, Luo H B, et al. Wear mechanisms of coated carbide tools in high-speed dry milling of titanium alloy[J]. Tribology, 2012, 32(1):40-46(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/mcxxb201201007
    [2] 李言, 孔祥建, 郭伟超, 等.纳米压痕技术研究现状与发展趋势[J].机械科学与技术, 2017, 36(3):469-474 http://journals.nwpu.edu.cn/jxkxyjs/CN/abstract/abstract6667.shtml

    Li Y, Kong X J, Guo W C, et al. Current state and development trends of Nano-indentation technology[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(3):469-474(in Chinese) http://journals.nwpu.edu.cn/jxkxyjs/CN/abstract/abstract6667.shtml
    [3] 张强, 张丽, 王晓云, 等.聚苯乙烯薄膜表面粘弹性行为的纳米压痕研究[J].表面技术, 2018, 47(3):237-243 http://d.old.wanfangdata.com.cn/Periodical/bmjs201803038

    Zhang Q, Zhang L, Wang X Y, et al. Nanoindentation research on surface viscoelastic behavior of polystyrene film[J]. Surface Technology, 2018, 47(3):237-243(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/bmjs201803038
    [4] Guo W C, Rauchs G, Papeleux L, et al. Evaluation of the mechanical properties of plasma-sprayed coating by nanoindentation technology[J]. Mechanics and Industry, 2012, 13(3):151-162 doi: 10.1051/meca/2012014
    [5] Moy C K S, Bocciarelli M, Ringer S P, et al. Identifica-tion of the material properties of al 2024 alloy by means of inverse analysis and indentation tests[J]. Materials Science and Engineering:A, 2011, 529:119-130 doi: 10.1016/j.msea.2011.09.005
    [6] Rodríguez M, Molina-AldareguíaJ M, González C, et al. Determination of the mechanical properties of amorphous materials through instrumented nanoindentation[J]. Acta Materialia, 2012, 60(9):3953-3964 doi: 10.1016/j.actamat.2012.03.027
    [7] 邢英杰, 蒋付强, 范恽, 等.3J21合金箔片纳米压痕尺寸效应分析[J].机械科学与技术, 2017, 36(5):793-797 http://journals.nwpu.edu.cn/jxkxyjs/CN/abstract/abstract6719.shtml

    Xing Y J, Jiang F Q, Fan Y, et al. Analysis of size effect in Nano-indentation process of 3J21 alloy foil[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(5):793-797(in Chinese) http://journals.nwpu.edu.cn/jxkxyjs/CN/abstract/abstract6719.shtml
    [8] Bouhala L, Makradi A, Belouettar S, et al. An XFEM/CZM based inverse method for identification of composite failure parameters[J]. Computers & Structures, 2015, 153:91-97 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3f21da32c7ed5e361757709d6ca2653f
    [9] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6):1564-1583 doi: 10.1557/JMR.1992.1564
    [10] Yu C Y R, Feng Y, et al. Relationships between the work recovery ratio of indentation and plastic parameters for instrumented spherical indentation[J]. MRS Communications, 2015, 5(1):89-94 doi: 10.1557/mrc.2015.10
    [11] Rauchs G, Bardon J, et al. Identification of elasto-viscoplastic material parameters by indentation testing and combined finite element modelling and numerical optimization[J]. Finite Elements in Analysis and Design, 2011, 47(7):653-667 doi: 10.1016/j.finel.2011.01.008
    [12] 董美伶, 金国, 王海斗, 等.纳米压痕法测量残余应力的研究现状[J].材料导报, 2014, 28(3):107-113 http://d.old.wanfangdata.com.cn/Periodical/cldb201403023

    Dong M L, Jin G, Wang H D, et al. The research status of nanoindetation methods for measuring residual stresses[J]. Materials Review, 2014, 28(3):107-113(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/cldb201403023
    [13] Chen X, Ogasawara N, Zhao M H, et al. On the uniqueness of measuring elastoplastic properties from indentation:the indistinguishable mystical materials[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(8):1618-1660 doi: 10.1016/j.jmps.2007.01.010
    [14] Cheng Y T, Cheng C M. Can stress-strain relationships be obtained from indentation curves using conical and pyramidal indenters?[J]. Journal of Materials Research, 1999, 14(9):3493-3496 doi: 10.1557/JMR.1999.0472
    [15] Phadikar J K, Bogetti T A, Karlsson A M. On the uniqueness and sensitivity of indentation testing of isotropic materials[J]. International Journal of Solids and Structures, 2013, 50(20-21):3242-3253 doi: 10.1016/j.ijsolstr.2013.05.028
    [16] Huang H, Zhao H W, Ma Z C, et al. Design and analysis of the precision-driven unit for nano-indentation and scratch test[J]. Journal of Manufacturing Systems, 2012, 31(1):76-81 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=737383d5002df91ebd1ed04c8a5b31cc
    [17] 黄虎, 赵宏伟, 史成利, 等.压电驱动型微纳米压痕测试装置的设计与试验研究[J].机械工程学报, 2013, 49(12):1-7 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201312001

    Huang H, Zhao H Q, Shi C L, et al. Design and experimental investigation of PZT-driving type micro/nanoindentation device[J]. Journal of Mechanical Engineering, 2013, 49(12):1-7(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201312001
    [18] Kozhevnikov I F, Cesbron J, Duhamel D, et al. A new algorithm for computing the indentation of a rigid body of arbitrary shape on a viscoelastic half-space[J]. International Journal of Mechanical Sciences, 2008, 50(7):1194-1202 doi: 10.1016/j.ijmecsci.2008.04.003
    [19] Schwiedrzik J J, Zysset P K. Quantitative analysis of imprint shape and its relation to mechanical properties measured by microindentation in bone[J]. Journal of Biomechanics, 2015, 48(2):210-216 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b1bd4cd97c5d0fd9d17bfc8c0b6660be
    [20] Ma Z S, Zhou Y C, Long S G, et al. Characterization of stress-strain relationships of elastoplastic materials:an improved method with conical and pyramidal indenters[J]. Mechanics of Materials, 2012, 54:113-123 doi: 10.1016/j.mechmat.2012.07.006
    [21] 王月敏, 闫相桥, 李垚.Pile-up现象对材料本构关系反演计算的影响[J].哈尔滨工程大学学报, 2018, 39(5):825-830 http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb201805004

    Wang Y M, Yan X Q, Li Y. Influence of pile-up on reverse analysis of constitutive relationship of materials[J]. Journal of Harbin Engineering University, 2018, 39(5):825-830(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb201805004
    [22] Dao M, Chollacoop N, Van Vliet K J, et al. Computational modeling of the forward and reverse problems in instrumented sharp indentation[J]. Acta Materialia, 2001, 49(19):3899-3918 doi: 10.1016/S1359-6454(01)00295-6
    [23] Schwaiger R, Moser B, Dao M, et al. Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel[J]. Acta Materialia, 2003, 51(17):5159-5172 doi: 10.1016/S1359-6454(03)00365-3
    [24] Amini K, Rizi A G. A new structured quasi-Newton algorithm using partial information on Hessian[J]. Journal of Computational and Applied Mathematics, 2010, 234(3):805-811 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=86f4f6750afcb2aa120ffad3886e9eba
    [25] 刘浩.ANSYS 15.0有限元分析从入门到精通[M].北京:机械工业出版社, 2014

    Liu H. Finite element analysis from the beginning to the mastery of ANSYS 15.0[M]. Beijing:China Machine Press, 2014(in Chinese)
    [26] 龚纯, 王正林.精通MATLAB最优化计算[M].2版.北京:电子工业出版社, 2012

    Gong C, Wang Z L. Optimization calculation of MATLAB[M]. 2nd ed. Beijing:Publishing House of Electronics Industry, 2012(in Chinese)
    [27] 柳建军, 贺国强, 康传刚.求解非线性不适定问题的隐式迭代法[J].应用数学和力学, 2009, 30(9):1107-1116 doi: 10.3879/j.issn.1000-0887.2009.09.013

    Liu J J, He G Q, Kang C G. Implicit iterative method for solving nonlinear unposed problems[J]. Applied Mathematics and Mechanics, 2009, 30(9):1107-1116(in Chinese) doi: 10.3879/j.issn.1000-0887.2009.09.013
    [28] Argyros I K, George S. Expanding the applicability of a modified gauss-newton method for solving nonlinear ill-posed problems[J]. Applied Mathematics and Computation, 2013, 219(21):10518-10526 doi: 10.1016/j.amc.2013.04.026
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  64
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-15
  • 刊出日期:  2019-04-05

目录

    /

    返回文章
    返回