留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向腕臂动作识别的加速度计数据分析

朱国康 周涛

朱国康, 周涛. 面向腕臂动作识别的加速度计数据分析[J]. 机械科学与技术, 2018, 37(9): 1426-1430. doi: 10.13433/j.cnki.1003-8728.20180163
引用本文: 朱国康, 周涛. 面向腕臂动作识别的加速度计数据分析[J]. 机械科学与技术, 2018, 37(9): 1426-1430. doi: 10.13433/j.cnki.1003-8728.20180163
Zhu Guokang, Zhou Tao. Elbow-wrist Activity Recognition via Accelerometer Data Analysis[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(9): 1426-1430. doi: 10.13433/j.cnki.1003-8728.20180163
Citation: Zhu Guokang, Zhou Tao. Elbow-wrist Activity Recognition via Accelerometer Data Analysis[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(9): 1426-1430. doi: 10.13433/j.cnki.1003-8728.20180163

面向腕臂动作识别的加速度计数据分析

doi: 10.13433/j.cnki.1003-8728.20180163
基金项目: 

国家自然科学基金项目(61503235、61603057、61602295、61663007、61672032)资助

详细信息
    作者简介:

    朱国康(1987-),讲师,博士,研究方向为数字信号处理、数据挖掘与分析,gzhu@ahu.edu.cn

Elbow-wrist Activity Recognition via Accelerometer Data Analysis

  • 摘要: 加速度传感器技术的不断发展和成熟为可穿戴设备的智能交互提供了新的途径。以可穿戴设备中的加速度计所捕捉的数据为支撑,对人的运动模式进行识别进而推断行为意图以实现智能化人机交互的方式,目前已受到人们的广泛关注。针对上述问题,本文基于循环神经网络的技术框架,提出一种高效的腕臂动作识别方法。该方法以单门控机制有效利用时序相关信息,对腕部可穿戴设备的三轴加速度计信号进行深度挖掘。实验结果表明,本文所提出的方法相较传统的机器学习方法而言性能更为可靠,能以更为简洁的网络结构取得与当前主流的循环神经网络算法同样的识别精度。
  • [1] Mintel Group Ltd. Digital trends-China-March 2016[EB/OL]. 2016. https://store.mintel.com/digital-trends-china-march-2016
    [2] Thorp E O. The invention of the first wearable computer[C]//Proceedings of the 2nd IEEE International Symposium on Wearable Computers. Washington, DC:IEEE, 1998:4-8
    [3] Kantar Worldpanel ComTech's. Quarterly report for wearable technology[EB/OL]. (2016-05-04) https://www.kantarworldpanel.com/global/News/Kantar-Launches-Quarterly-Report-for-Wearable-Technology
    [4] Choi E S, Bang W C, Cho S J, et al. Beatbox music phone:gesture-based interactive mobile phone using a tri-axis accelerometer[C]//Proceedings of International Conference on Industrial Technology. Hongkong, China:IEEE, 2005:97-102
    [5] Fujimoto T, Nakajima H, Tsuchiya N, et al. Wearable human activity recognition by electrocardiograph and accelerometer[C]//Proceedings of the 2013 IEEE 43rd International Symposium on Multiple-Valued Logic. Washington, DC:IEEE, 2013:12-17
    [6] Yurur O, Liu C H, Moreno W. Unsupervised posture detection by smartphone accelerometer[J]. Electronics Letters, 2013,49(8):562-564
    [7] Rodriguez-Martin D, Samà A, Perez-Lopez C, et al. SVM-based posture identification with a single waist-located triaxial accelerometer[J]. Expert Systems with Applications, 2013,40(18):7203-7211
    [8] Rodríguez-Martín D, Samà A, Pérez-López C, et al. Posture transition identification on PD patients through a SVM-based technique and a single waist-worn accelerometer[J]. Neurocomputing, 2015,164:144-153
    [9] Ahmed M E, Song J B. Non-parametric bayesian human motion recognition using a single MEMS tri-axial accelerometer[J]. Sensors, 2012,12(10):13185-13211
    [10] Gao L L, Campbell H A, Bidder O R, et al. A web-based semantic tagging and activity recognition system for species' accelerometry data[J]. Ecological Informatics, 2013,13:47-56
    [11] Zhou Y H, Cheng Z X, Jing L, et al. Pre-classification based hidden Markov model for quick and accurate gesture recognition using a finger-worn device[J]. Applied Intelligence, 2014,40(4):613-622
    [12] Martens J, Sutskever I. Learning recurrent neural networks with Hessian-free optimization[C]//Proceedings of the 28th International Conference on Machine Learning. Bellevue, Washington:ICML, 2011:1033-1040
    [13] Cho K, Van Merrienboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. Computer Science, 2014
    [14] Mazumdar J, Harley R G. Recurrent neural networks trained with backpropagation through time algorithm to estimate nonlinear load harmonic currents[J]. IEEE Transactions on Industrial Electronics, 2008,55(9):3484-3491
    [15] Bersini H, Gorrini V. A simplification of the backpropagation-through-time algorithm for optimal neurocontrol[J]. IEEE Transactions on Neural Networks, 1997,8(2):437-441
    [16] Ketkar N. Deep Learning with Python[M]. Berkeley, CA:Apress, 2017
    [17] Johnson R, Zhang T. Accelerating stochastic gradient descent using predictive variance reduction[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Cambridge:NIPS, 2013:315-323
    [18] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32
    [19] Bartlett P, Freund Y, Lee W S, et al. Boosting the margin:a new explanation for the effectiveness of voting methods[J]. Annals of Statistics, 1998,26(5):1651-1686
    [20] Ukil A. Support vector machine[J]. Computer Science, 2002, 1(4):1-28
  • 加载中
计量
  • 文章访问数:  314
  • HTML全文浏览量:  35
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-02
  • 刊出日期:  2018-09-05

目录

    /

    返回文章
    返回