留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外加稳态磁场作用下的焊接电弧数值仿真

周祥曼 田启华 杜义贤 柏兴旺

周祥曼, 田启华, 杜义贤, 柏兴旺. 外加稳态磁场作用下的焊接电弧数值仿真[J]. 机械科学与技术, 2018, 37(7): 1068-1075. doi: 10.13433/j.cnki.1003-8728.20180124
引用本文: 周祥曼, 田启华, 杜义贤, 柏兴旺. 外加稳态磁场作用下的焊接电弧数值仿真[J]. 机械科学与技术, 2018, 37(7): 1068-1075. doi: 10.13433/j.cnki.1003-8728.20180124
Zhou Xiangman, Tian Qihua, Du Yixian, Bai Xingwang. Numerical Simulation of Welding Arc under External Static Magnetic Field[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(7): 1068-1075. doi: 10.13433/j.cnki.1003-8728.20180124
Citation: Zhou Xiangman, Tian Qihua, Du Yixian, Bai Xingwang. Numerical Simulation of Welding Arc under External Static Magnetic Field[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(7): 1068-1075. doi: 10.13433/j.cnki.1003-8728.20180124

外加稳态磁场作用下的焊接电弧数值仿真

doi: 10.13433/j.cnki.1003-8728.20180124
基金项目: 

国家自然科学基金项目(51705287,51475265,51775308)资助

详细信息
    作者简介:

    周祥曼(1983-),讲师,博士,研究方向为电弧增材制造工艺及其多尺度仿真,zhouxman@ctgu.edu.cn

    通讯作者:

    田启华,教授,博士,tqh@ctgu.edu.cn

Numerical Simulation of Welding Arc under External Static Magnetic Field

  • 摘要: 为了揭示外加静态磁场对焊接电弧形态及传热传质的影响规律,建立了焊接电弧的数值模型,对比分析了普通熔积、外加纵向磁场作用以及横向磁场作用下的电弧传热传质过程。结果显示:相比普通熔积,外加纵向磁场作用下,靠近基板的位置电流密度和温度减小,电弧的温度和压强峰值减小,中心处出现负压;外加横向磁场作用下,电弧整体偏向一侧,电弧中心的电流密度、温度和电弧压强都小于未施加外加磁场情况。外加磁场对电弧形态及传热传质的改变,将导致电弧和金属之间的热和力相互作用改变,从而使得熔池的传热传质过程相应的发生改变。
  • [1] 耿海滨,熊江涛,黄丹,等.丝材电弧增材制造技术研究现状与趋势[J].焊接,2015,(11):17-21 Geng H B, Xiong J T, Huang D, et al. Research status and trends of wire and arc additive manufacturing technology[J]. Welding & Joining, 2015,(11):17-21(in Chinese)
    [2] Hsu K C, Etemadi K, Pfender E. Study of the free-burning high-intensity argon arc[J]. Journal of Applied Physics, 1983,54(3):1293-1301
    [3] Lowke J J, Kovitya P, Schmid H P. Theory of free-burning arc columns including the influence of the cathode[J]. Journal of Physics D:Applied Physics, 1992,25(11):1600-1606
    [4] Farmer A J D, Haddad G N, Kovitya P. Temperature distributions in a free-burning arc. IV. Results in argon at elevated pressures[J]. Journal of Physics D:Applied Physics, 1988,21(3):432-436
    [5] Xu G, Hu J, Tsai H L. Three-dimensional modeling of the plasma arc in arc welding[J]. Journal of Applied Physics, 2008,104(10):103301
    [6] Xu G, Hu J, Tsai H L. Modeling three-dimensional plasma arc in gas tungsten arc welding[J]. Journal of Manufacturing Science and Engineering, 2012,134(3):31001
    [7] Li L C, Xia W D. Effect of an axial magnetic field on a DC argon arc[J]. Chinese Physics B, 2008,17(2):649-654
    [8] Chen T, Zhang X N, Bai B, et al. Numerical study of dc argon arc with axial magnetic fields[J]. Plasma Chemistry and Plasma Processing, 2015,35(1):61-74
    [9] 石玗,郭朝博,黄健康,等.脉冲电流作用下TIG电弧的数值分析[J].物理学报,2011,60(4):048102 Shi Y, Guo C B, Huang J K, et al. Numerical simulation of pulsed current tungesten inert gas (TIG) welding arc[J]. Acta Physica Sinica, 2011,60(4):048102(in Chinese)
    [10] 王新鑫,樊丁,黄健康,等.双钨极耦合电弧数值模拟[J].物理学报,2013,62(22):228101 Wang X X, Fan D, Huang J K, et al. Numerical simulation of coupled arc in double electrode tungsten inert gas welding[J]. Acta Physica Sinica, 2013,62(22):228101(in Chinese)
    [11] Haidar J. The dynamic effects of metal vapour in gas metal arc welding[J]. Journal of Physics D:Applied Physics, 2010,43(16):165204
    [12] Murphy A B. Influence of metal vapour on arc temperatures in gas-metal arc welding:convection versus radiation[J]. Journal of Physics D:Applied Physics, 2013,46(22):224004
    [13] Schnick M, Fuessel U, Hertel M, et al. Modelling of gas-metal arc welding taking into account metal vapour[J]. Journal of Physics D:Applied Physics, 2010,43(43):434008
    [14] 周祥曼,张海鸥,王桂兰,等.电弧增材成形中熔积层表面形貌对电弧形态影响的仿真[J].物理学报,2016,65(3):038103 Zhou X M, Zhang H O, Wang G L, et al. Simulation of the influences of surface topography of deposited layer on arc shape and state in arc based additive forming[J]. Acta Physica Sinica, 2016,65(3):038103(in Chinese)
    [15] Hu J, Tsai H L. Heat and mass transfer in gas metal arc welding. Part I:the arc[J]. International Journal of Heat and Mass Transfer, 2007,50(5-6):833-846
    [16] Rao Z H, Hu J, Liao S M, et al. Modeling of the transport phenomena in GMAW using argon-helium mixtures. Part I-the arc[J]. International Journal of Heat and Mass Transfer, 2010,53(25-26):5707-5721
    [17] Lowke J J, Tanaka M. ‘LTE-diffusion approximation’ for arc calculations[J]. Journal of Physics D:Applied Physics, 2006,39(16):3634
    [18] Jian X X, Wu C S. Numerical analysis of the coupled arc-weld pool-keyhole behaviors in stationary plasma arc welding[J]. International Journal of Heat and Mass Transfer, 2015,84:839-847
    [19] Jönsson P G, Eagar T W, Szekely J. Heat and metal transfer in gas metal arc welding using argon and helium[J]. Metallurgical and Materials Transactions B, 1995,26(2):383-395
    [20] Hu J, Tsai H L. Heat and mass transfer in gas metal arc welding. Part Ⅱ:the metal[J]. International Journal of Heat and Mass Transfer, 2007,50(5-6):808-820
    [21] 田君国,邓晶,李要建,等.自由燃烧电弧的磁流体动力学数值模拟[J].力学学报,2011,43(1):32-38 Tian J G, Deng J, Li Y J, et al. Numerical simulation for a free-burning argon arc with MHD model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011,43(1):32-38(in Chinese)
    [22] McKelliget J, Szekely J. Heat transfer and fluid flow in the welding arc[J]. Metallurgical Transactions A, 1986,17(7):1139-1148
  • 加载中
计量
  • 文章访问数:  226
  • HTML全文浏览量:  46
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-15
  • 刊出日期:  2018-07-05

目录

    /

    返回文章
    返回