留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动态修改路径的多机器人路径规划

晁永生 孙文磊

晁永生, 孙文磊. 动态修改路径的多机器人路径规划[J]. 机械科学与技术, 2018, 37(10): 1483-1488. doi: 10.13433/j.cnki.1003-8728.20180055
引用本文: 晁永生, 孙文磊. 动态修改路径的多机器人路径规划[J]. 机械科学与技术, 2018, 37(10): 1483-1488. doi: 10.13433/j.cnki.1003-8728.20180055
Chao Yongsheng, Sun Wenlei. Dynamic Path Modification for Multi-robot Path Planning[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(10): 1483-1488. doi: 10.13433/j.cnki.1003-8728.20180055
Citation: Chao Yongsheng, Sun Wenlei. Dynamic Path Modification for Multi-robot Path Planning[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(10): 1483-1488. doi: 10.13433/j.cnki.1003-8728.20180055

动态修改路径的多机器人路径规划

doi: 10.13433/j.cnki.1003-8728.20180055
基金项目: 

国家自然科学基金项目(51565058)资助

详细信息
    作者简介:

    晁永生(1976-),副教授,博士,研究方向为机器人路径规划、工艺优化,cys21st@163.com

Dynamic Path Modification for Multi-robot Path Planning

  • 摘要: 为了实现在动态环境下多机器人无碰撞运动,提出一个动态修改路径的两阶段协调方法。首先,建立了动态路径修改的多机器人协调框架。在动态路径修改的第一阶段使用A*算法搜索每个机器人在静态障碍物下优化的无碰撞路径;第二阶段采用增量式A*算法搜索动态环境下的可行路径以提高搜索效率。针对发生的冲突,综合考虑规划时间和路径长度两个因素,建立的路径修改顺序模型,选择最优的修改路径。最后,实例验证了该方法的有效性。
  • [1] Matariĉ M J, Sukhatme G S, Østergaard E H. Multi-robot task allocation in uncertain environments[J]. Autonomous Robots, 2003,14(2-3):255-263
    [2] 晁永生,刘海江.白车身焊接机器人加工路径优化和仿真[J].中国机械工程,2010,21(4):442-445 Chao Y S, Liu H J. Welding robot path optimization and simulation for body in white[J]. China Mechanical Engineering, 2010,21(4):442-445(in Chinese)
    [3] Hatime H, Pendse R, Watkins J M. Comparative study of task allocation strategies in multirobot systems[J]. IEEE Sensors Journal, 2013,13(1):253-262
    [4] Stachniss C. Coordinated multi-robot exploration[M]. Stachniss C. Robotic Mapping and Exploration. Berlin, Heidelberg:Springer, 2009
    [5] Dias M B, Zlot R, Kalra N, et al. Market-based multirobot coordination:a survey and analysis[J]. Proceedings of the IEEE, 2006,94(7):1257-1270
    [6] Ferreira B M, Matos A C, Cruz N A, et al. A centralized approach to the coordination of marine robots[C]//Proceedings of the 11th Portuguese Conference on Automatic Control. Cham:Springer, 2015
    [7] Li M, Alvarez A, De Pellegrini F, et al. ROBOTRAK:a centralized real-time monitoring, control, and coordination system for robot swarms[C]//Proceedings of the 1st International Conference on Robot Communication and Coordination, ROBOCOMM 2007. Athens, Greece:IEEE, 2007
    [8] Marchese F M. A Multi-threads architecture for the motion coordination of a heterogeneous multi-robot system[C]//Proceedings of the 6th Mexican International Conference on Artificial Intelligence-Special Session. Aguascallentes, Mexico:IEEE, 2007:418-428
    [9] Liu C, Kroll A. A centralized multi-robot task allocation for industrial plant inspection by using A* and genetic algorithms[M]. Rutkowski L, Korytkowski M, Scherer R, et al. Artificial Intelligence and Soft Computing. Berlin, Heidelberg:Springer, 2012
    [10] 陈洋,赵新刚,韩建达.移动机器人3维路径规划方法综述[J].机器人,2010,32(4):568-576 Chen Y, Zhao X G, Han J D. Review of 3D path planning methods for mobile robot[J]. Robot, 2010,32(4):568-576(in Chinese)
    [11] Colby M, Chung J J, Tumer K. Implicit adaptive multi-robot coordination in dynamic environments[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany:IEEE, 2015
    [12] Feddema J T, Lewis C, Schoenwald D A. Decentralized control of cooperative robotic vehicles:theory and application[J]. IEEE Transactions on Robotics and Automation, 2002,18(5):852-864
    [13] Lacroix P, Polotski V, Cohen P. Decentralized control of cooperative multi-robot systems[J]. Integrated Computer-Aided Engineering, 1999,6(4):259-274
    [14] Ota J. Multi-agent robot systems as distributed autonomous systems[J]. Advanced Engineering Informatics, 2006,20(1):59-70
    [15] Settembre G P, Scerri P, Farinelli A, et al. A decentralized approach to cooperative situation assessment in multi-robot systems[C]//Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems. Estoril, Portugal:International Foundation for Autonomous Agents and Multiagent Systems, 2008:31-38
    [16] Liu S, Sun D, Zhu C G. A dynamic priority based path planning for cooperation of multiple mobile robots in formation forming[J]. Robotics and Computer-Integrated Manufacturing, 2014,30(6):589-596
    [17] Fraichard T. Trajectory planning in a dynamic workspace:a ‘state-time space’ approach[J]. Advanced Robotics, 1998,13(1):75-94
    [18] Koenig S, Likhachev M. Incremental A*[J]. Proceedings of the Neural Information Processing Systems, 2002,57(9):1539-1546
  • 加载中
计量
  • 文章访问数:  596
  • HTML全文浏览量:  39
  • PDF下载量:  289
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-20
  • 刊出日期:  2018-10-05

目录

    /

    返回文章
    返回