留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大型航空结构有限元数值模拟方法研究

万春华 段世慧 聂小华 吴存利 张维

万春华, 段世慧, 聂小华, 吴存利, 张维. 大型航空结构有限元数值模拟方法研究[J]. 机械科学与技术, 2018, 37(5): 816-820. doi: 10.13433/j.cnki.1003-8728.20180021
引用本文: 万春华, 段世慧, 聂小华, 吴存利, 张维. 大型航空结构有限元数值模拟方法研究[J]. 机械科学与技术, 2018, 37(5): 816-820. doi: 10.13433/j.cnki.1003-8728.20180021
Wan Chunhua, Duan Shihui, Nie Xiaohua, Wu Cunli, Zhang Wei. Study on Finite Element Modeling for Large Aircraft Structures[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(5): 816-820. doi: 10.13433/j.cnki.1003-8728.20180021
Citation: Wan Chunhua, Duan Shihui, Nie Xiaohua, Wu Cunli, Zhang Wei. Study on Finite Element Modeling for Large Aircraft Structures[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(5): 816-820. doi: 10.13433/j.cnki.1003-8728.20180021

大型航空结构有限元数值模拟方法研究

doi: 10.13433/j.cnki.1003-8728.20180021
基金项目: 

民用飞机专项科研项目(MJ-2015-F-027)资助

详细信息
    作者简介:

    万春华(1983-),工程师,研究方向为飞机结构强度分析及虚拟仿真,wanc_1@163.com

    通讯作者:

    段世慧,研究员,博士,duansh63@163.com

Study on Finite Element Modeling for Large Aircraft Structures

  • 摘要: 利用试验数据,针对大型航空结构,系统地研究了"自然网格"模型和细节模型对结构分析的影响。采用"自然网格"方法建立翼身组合体有限元模型,计算得到机翼外端部变形误差7.46%(与试验比较),外翼上壁板试验与分析一致性评估误差带10%以内的应变片约占总数的80%,中央翼上壁板约占70%。采用以壳元模拟为主细化网格建模方法建立全机结构有限元模型,计算得到机翼外端部变形误差为1.87%,外翼和中央翼上壁板试验与分析一致性评估误差带10%以内的应变片均占总数80%以上,这表明细化模型能更精确地模拟结构的刚度和预估结构的传载分配和应力/应变响应,预判危险部位,为进一步有限元细节分析或破坏分析提供准确的边界。
  • [1] 叶天麒,周天孝.航空结构有限元分析指南[M].北京:航空工业出版社,1996 Ye T Q, Zhou T X. Guidelines for finite element analysis of aircraft structures[M]. Beijing:Aviation Industry Press, 1996(in Chinese)
    [2] 杨卫平.飞机结构有限元建模指南[M].北京:航空工业出版社,2013 Yang W P. Guidelines for finite element modeling of aircraft structures[M]. Beijing:Aviation Industry Press, 2013(in Chinese)
    [3] 孙侠生.飞机结构强度新技术[M].北京:航空工业出版社,2017 Sun X S. New technology of aircraft structures strength[M]. Beijing:Aviation Industry Press, 2017(in Chinese)
    [4] 江金锋,张颖,孙秦.基于Global/Local法的螺栓连接结构静强度渐进破坏[J].南京航空航天大学学报,2010,42(3):318-321 Jiang J F, Zhang Y, Sun Q. Global/Local analysis for progressive fracture of bolted structure[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010,42(3):318-321(in Chinese)
    [5] Linder P. Virtual testing of stiffened composite panels at airbus[J]. International Journal of Structural Stability and Dynamics, 2010,10(4):589-600
    [6] Führer T, Willberg C, Freund S, et al. Automated model generation and sizing of aircraft structures[J]. Aircraft Engineering and Aerospace Technology, 2016,88(2):268-276
    [7] Godines C, DorMohammadi S, Abdi F, et al. Damage tolerant composite design principles for aircraft components under static service loading using multi-scale progressive failure analysis[J]. Journal of Composite Materials, 2017,51(10):1393-1419
    [8] Schwinn D B. Coupling of static and dynamic fuselage design[J]. Aircraft Engineering and Aerospace Technology, 2016,88(1):1-15
    [9] Islam M M, Kapani R K. Global-local finite element analysis of adhesive joints and crack propagation[J]. Journal of Aircraft, 2014,51(1):310-319
    [10] Ostergaard M G, Ibbotson A R, Le Roux O, et al. Virtual testing of aircraft structures[J]. CEAS Aeronautical Journal, 2011,1(1-4):83-103
    [11] 万春华,段世慧,吴存利.加筋结构后屈曲有限元建模方法研究[J].机械科学与技术,2015,34(5):795-798 Wan C H, Duan S H, Wu C L. Study on the finite element modeling for post-buckling analysis of the stiffened structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2015,34(5):795-798(in Chinese)
    [12] Campbell J, Hetey L, Vignjevic R. Non-linear idealisation error analysis of a metallic stiffened panel loaded in compression[J]. Thin-Walled Structures, 2012,54:44-53
    [13] Murphy A, Price M, Lynch C, et al. The computational post-buckling analysis of fuselage stiffened panels loaded in shear[J]. Thin-Walled Structures, 2005,43(9):1455-1474
    [14] Xu M C, Soares C G. Assessment of the ultimate strength of narrow stiffened panel test specimens[J]. Thin-Walled Structures, 2012,55:11-21
    [15] Kapidžić Z, Nilsson L, Ansell H. Finite element modeling of mechanically fastened composite-aluminum joints in aircraft structures[J]. Composite Structures, 2014,109:198-210
  • 加载中
计量
  • 文章访问数:  374
  • HTML全文浏览量:  58
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-29
  • 刊出日期:  2018-05-05

目录

    /

    返回文章
    返回