留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiAl基合金砂带精密磨削表面完整性研究

张国军 黄云 邹莱

张国军, 黄云, 邹莱. TiAl基合金砂带精密磨削表面完整性研究[J]. 机械科学与技术, 2018, 37(7): 1055-1060. doi: 10.13433/j.cnki.1003-8728.2018.0709
引用本文: 张国军, 黄云, 邹莱. TiAl基合金砂带精密磨削表面完整性研究[J]. 机械科学与技术, 2018, 37(7): 1055-1060. doi: 10.13433/j.cnki.1003-8728.2018.0709
Zhang Guojun, Huang Yun, Zou Lai. Research on Surface Integrity in Precision Abrasive Belt Grinding of TiAl based Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(7): 1055-1060. doi: 10.13433/j.cnki.1003-8728.2018.0709
Citation: Zhang Guojun, Huang Yun, Zou Lai. Research on Surface Integrity in Precision Abrasive Belt Grinding of TiAl based Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(7): 1055-1060. doi: 10.13433/j.cnki.1003-8728.2018.0709

TiAl基合金砂带精密磨削表面完整性研究

doi: 10.13433/j.cnki.1003-8728.2018.0709
基金项目: 

重庆市基础科学与前沿技术研究专项(cstc2016jcyja0066)与中央高校基本科研业务项目(106112016CDJZR288804)资助

详细信息
    作者简介:

    张国军(1992-),硕士研究生,研究方向为机电一体化及先进制造技术,zhangguojun@cqu.edu.cn

    通讯作者:

    邹莱,讲师,博士,zoulai@cqu.edu.cn

Research on Surface Integrity in Precision Abrasive Belt Grinding of TiAl based Alloy

  • 摘要: 针对TiAl基合金塑性低、脆性大、表面可加工性差等问题,采用正交试验对TiAl基合金的砂带磨削表面完整性进行研究。总结归纳TiAl基合金砂带磨削材料去除率和表面质量的影响因素,通过灰色关联法得到正交试验的最优工艺参数为A3B3C2D2。采用最优工艺参数对TiAl基合金进行砂带磨削,分析TiAl基合金砂带磨削磨粒磨损过程,对磨削前后工件的表面形貌进行分析。结果表明砂带磨削对TiAl基合金的磨削加工效果好,可用于TiAl基合金表面的精密加工。本文研究为TiAl基合金表面精密加工提供了新的加工方法。
  • [1] 姜国庆,武高辉,刘艳梅.连续纤维增强钛铝金属间化合物基复合材料的研究进展[J].材料导报,2008,22(SX):404-408,433 Jiang G Q, Wu G H, Liu Y M. Research progress in continuous fiber reinforced titanium aluminides intermetallic matrix composites[J]. Materials Review, 2008,22(SX):404-408,433(in Chinese)
    [2] Huo W G, Xu J H, Fu Y C. The finite element analysis of surface temperature on dry belt grinding for titanium alloys[J]. Advanced Materials Research, 2008,53-54:219-224
    [3] Aspinwall D K, Dewes R C, Mantle A L. The machining of γ-TiAl intermetallic alloys[J]. CIRP Annals, 2005,54(1):99-104
    [4] Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines[J]. Materials at High Temperatures, 2016,33(4-5):549-559
    [5] Kong M C, Axinte D, Voice W. Aspects of material removal mechanism in plain waterjet milling on gamma titanium aluminide[J]. Journal of Materials Processing Technology, 2010,210(3):573-584
    [6] Klocke F, Settineri L, Lung D, et al. High performance cutting of gamma titanium aluminides:Influence of lubricoolant strategy on tool wear and surface integrity[J]. Wear, 2013,302(1-2):1136-1144
    [7] Liu J, Zhu D, Zhao L, et al. Experimental investigation on electrochemical machining of γ-TiAl intermetallic[J]. Procedia CIRP, 2015,35:20-24
    [8] Beranoagirre A, De Lacalle L N. Grinding of gamma TiAl intermetallic alloys[J]. Procedia Engineering, 2013,63:489-498
    [9] Hood R, Cooper P, Aspinwall D K, et al. Creep feed grinding of γ-TiAl using single layer electroplated diamond superabrasive wheels[J]. CIRP Journal of Manufacturing Science and Technology, 2015,11:36-44
    [10] 路勇,黄云.砂带磨削磨损性能试验研究[J].机械科学与技术,2014,33(12):1865-1868 Lu Y, Huang Y. Experimental investigation in the grinding and wear performance of abrasive belt grinding[J]. Mechanical Science and Technology for Aerospace Engineering, 2014,33(12):1865-1868(in Chinese)
    [11] Xu X P, Yu Y Q, Huang H. Mechanisms of abrasive wear in the grinding of titanium (TC4) and nickel (K417) alloys[J]. Wear, 2003,255(7-12):1421-1426
    [12] Shibata J, Chao-Kun K, Inasaki I, et al. Adaptive control for conveyor-type belt grinder[J]. CIRP Annals, 1980,29(1):217-220
    [13] 黄云,黄智.现代砂带磨削技术及工程应用[M].重庆:重庆大学出版社,2009:346-347 Huang Y, Huang Z. Modern abrasive belt grinding technology and engineering application[M]. Chongqing:Chongqing University Press, 2009:346-347(in Chinese)
    [14] Xiao G J, Huang Y. Constant-load adaptive belt polishing of the weak-rigidity blisk blade[J]. The International Journal of Advanced Manufacturing Technology, 2015,78(9-12):1473-1484
    [15] Xiao G J, Huang Y. Equivalent self-adaptive belt grinding for the real-R edge of an aero-engine precision-forged blade[J]. The International Journal of Advanced Manufacturing Technology, 2016,83(9-12):1697-1706
  • 加载中
计量
  • 文章访问数:  214
  • HTML全文浏览量:  47
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-25
  • 刊出日期:  2018-07-05

目录

    /

    返回文章
    返回