留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车通风式制动盘的散热特性分析

刘静娟 刘莹 康光林 韩委委

刘静娟, 刘莹, 康光林, 韩委委. 高速列车通风式制动盘的散热特性分析[J]. 机械科学与技术, 2018, 37(6): 937-940. doi: 10.13433/j.cnki.1003-8728.2018.0618
引用本文: 刘静娟, 刘莹, 康光林, 韩委委. 高速列车通风式制动盘的散热特性分析[J]. 机械科学与技术, 2018, 37(6): 937-940. doi: 10.13433/j.cnki.1003-8728.2018.0618
Liu Jingjuan, Liu Ying, Kang Guanglin, Han Weiwei. Analysis of Heat Dissipation Performance for Ventilated Brake Disc in High Speed Train[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(6): 937-940. doi: 10.13433/j.cnki.1003-8728.2018.0618
Citation: Liu Jingjuan, Liu Ying, Kang Guanglin, Han Weiwei. Analysis of Heat Dissipation Performance for Ventilated Brake Disc in High Speed Train[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(6): 937-940. doi: 10.13433/j.cnki.1003-8728.2018.0618

高速列车通风式制动盘的散热特性分析

doi: 10.13433/j.cnki.1003-8728.2018.0618
基金项目: 

江西省科技合作计划项目(2014BDH80021)与江西省精密驱动与控制重点实验室开放基金项目(PLPDC-KFKT-201605)资助

详细信息
    作者简介:

    刘静娟(1992-),硕士研究生,研究方向为计算机仿真、制动器性能,jingjuan_liu@163.com

    通讯作者:

    刘莹,教授,博士生导师,lying@ncu.edu.cn

Analysis of Heat Dissipation Performance for Ventilated Brake Disc in High Speed Train

  • 摘要: 通风式制动盘的散热特性对提高列车的制动性能至关重要,筋板结构是影响通风式制动盘散热特性的关键因素。本文考虑了紧急制动工况,采用计算流体力学分析方法(Computational fluid dynamics,CFD)分析了不同筋板结构制动盘的散热特性,筋板结构类型包括径向直筋板结构(Z型)、圆弧筋板结构(A型)、矩形筋板结构(R型)和梯形筋板结构(T型)。研究了制动盘的温度分布、平均对流换热系数和总热流量的变化情况。结果表明:A型制动盘结构散热性能较好;与Z型制动盘相比,A型制动盘的温度分布较均匀,温度降低了7.3%;平均对流换热系数较高;总热流量提高了32.3%。因此,A型制动盘筋板结构可有效地提高制动盘的散热特性。
  • [1] 周素霞,杨月,谢基龙.高速列车制动盘瞬态温度和热应力分布仿真分析[J].机械工程学报,2011,47(22):126-131 Zhou S X, Yang Y, Xie J L. Analysis of transient temperature and thermal stress distribution on the high-speed strain brake disk by simulation[J]. Journal of Mechanical Engineering, 2011,47(22):126-131(in Chinese)
    [2] 余志生.汽车理论[M]. 5版. 北京:机械工业出版社,2009 Yu Z S. Car theory[M]. 5th ed. Beijing:China Machine Press, 2009(in Chinese)
    [3] 曲杰,苏海赋.基于代理模型的通风盘式制动器制动盘结构优化设计[J].工程力学,2013,30(2):332-339 Qu J, Su H F. Optimization design on ventilated disc brake based on surrogarte model technology[J]. Engineering Mechanics, 2013,30(2):332-339(in Chinese)
    [4] 杜旭之,杨志刚,李启良,等.某乘用车制动盘冷却特性的研究[J].同济大学学报(自然科学版),2016,44(5):787-793 Du X Z, Yang Z G, Li Q L, et al. Brake disc cooling characteristics of a passenger car[J]. Journal of Tongji University (Natural Science), 2016,44(5):787-793(in Chinese)
    [5] Yan H B, Feng S S, Lu T J, et al. Experimental and numerical study of turbulent flow and enhanced heat transfer by cross-drilled holes in a pin-finned brake disc[J]. International Journal of Thermal Sciences, 2017,118:355-366
    [6] Yan H B, Zhang Q C, Lu T J. Heat transfer enhancement by X-type lattice in ventilated brake disc[J]. International Journal of Thermal Sciences, 2016,107:39-55
    [7] Munisamy K M, Shuaib N H, Yusoff M Z, et al. Heat transfer enhancement on ventilated brake disk with blade inclination angle variation[J]. International Journal of Automotive Technology, 2013,14(4):569-577
    [8] 郑伟奇,康宁,刘献栋,等.基于非线性回归的制动盘通风道结构优化[J].汽车工程,2016,38(11):1351-1356 Zheng W Q, Kang N, Liu X D, et al. Structural optimization of ventilation channels in brake disc based on nonlinear regression[J]. Automotive Engineering, 2016,38(11):1351-1356(in Chinese)
    [9] Raj K T R, Ramsai R, Mathew J, et al. Numerical investigation of fluid flow and heat transfer characteristics on the aerodynamics of ventilated disc brake rotor using CFD[J]. Thermal Science, 2014,18(2):667-675
    [10] Pevec M, Potrc I, Bombek G, et al. Prediction of the cooling factors of a vehicle brake disc and its influence on the results of a thermal numerical simulation[J]. International Journal of Automotive Technology, 2012,13(5):725-733
    [11] 潘利科, 韩建民, 李志强, 等. 列车制动盘通风散热的数值仿真[J]. 北京交通大学学报, 2015,39(1):118-124 Pan L K, Han J M, Li Z Q, et al. Numerical simulation for train brake disc ventilation[J]. Journal of Beijing Jiaotong University, 2015,39(1):118-124(in Chinese)
    [12] Jiang L, Jiang Y L, Yu L, et al. Thermal analysis for brake disks of SiC/6061 Al alloy co-continuous composite for CRH3 during emergency braking considering airflow cooling[J]. Transactions of Nonferrous Metals Society of China, 2012,22(11):2783-2791
    [13] 杨世铭.传热学基础[M].2版.北京:高等教育出版社,2003:2-10 Yang S M. Heat transfer[M]. 2nd ed. Beijing:Higher Education Press, 2003:2-10(in Chinese)
    [14] Chopade M, Valavade A. Experimental investigation using CFD for thermal performance of ventilated disc brake rotor[J]. International Journal of Automotive Technology, 2017,18(2):235-244
    [15] Prabhakar S, Prakash S, Kumar M S, et al. Performance analysis of ventilated brake disc for its effective cooling[C]//Proceedings of 2015 National Conference on Recent Trends and Developments in Sustainable Green. Chennai, India, 2015,974:358-361
  • 加载中
计量
  • 文章访问数:  250
  • HTML全文浏览量:  29
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-30
  • 刊出日期:  2018-06-05

目录

    /

    返回文章
    返回