留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型3-PRC柔性并联微操作平台的研究

李祥春 李杨民 丁冰晓 徐洪业

李祥春, 李杨民, 丁冰晓, 徐洪业. 新型3-PRC柔性并联微操作平台的研究[J]. 机械科学与技术, 2018, 37(5): 709-714. doi: 10.13433/j.cnki.1003-8728.2018.0509
引用本文: 李祥春, 李杨民, 丁冰晓, 徐洪业. 新型3-PRC柔性并联微操作平台的研究[J]. 机械科学与技术, 2018, 37(5): 709-714. doi: 10.13433/j.cnki.1003-8728.2018.0509
Li Xiangchun, Li Yangmin, Ding Bingxiao, Xu Hongye. An Investigation on a Novel 3-PRC Compliant Parallel Micromanipulator[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(5): 709-714. doi: 10.13433/j.cnki.1003-8728.2018.0509
Citation: Li Xiangchun, Li Yangmin, Ding Bingxiao, Xu Hongye. An Investigation on a Novel 3-PRC Compliant Parallel Micromanipulator[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(5): 709-714. doi: 10.13433/j.cnki.1003-8728.2018.0509

新型3-PRC柔性并联微操作平台的研究

doi: 10.13433/j.cnki.1003-8728.2018.0509
基金项目: 

国家自然科学基金项目(51575544)与天津市自然科学基金项目(16JCZDJC38000)资助

详细信息
    作者简介:

    李祥春(1991-),硕士研究生,研究方向为微纳米操作及少自由度并联机器人机构与控制策略研究,598683185@qq.com

    通讯作者:

    李杨民,教授,博士生导师,yangmin_li@hotmail.com

An Investigation on a Novel 3-PRC Compliant Parallel Micromanipulator

  • 摘要: 采用压电陶瓷作为驱动器设计了一种带有二级杠杆放大机构的3-PRC柔性并联微操作平台,该平台能实现空间三自由度的微小平移运动,放大机构的理论与有限元仿真分析放大倍数分别为8.772和8.245。首先采用矢量法建立了该机构的运动学模型,得到了其运动学正、逆解和雅克比矩阵。然后利用MATLAB软件分析并绘制了平台的工作空间,最后对机构的解耦性进行了理论分析并利用有限元软件进行了验证。结果表明该机构的耦合性误差小,可以实现空间三自由度微纳米级别的运动,具有较大的运动空间和良好的运动解耦性。
  • [1] 李杨民,汤晖,徐青松,等.面向生物医学应用的微操作机器人技术发展态势[J].机械工程学报,2011,47(23):1-13 Li Y M, Tang H, Xu Q S, et al. Development status of micromanipulator technology for biomedical applications[J]. Journal of Mechanical Engineering, 2011,47(23):1-13(in Chinese)
    [2] 林海波,杨国哲.压电陶瓷电机驱动的三维微动定位平台及验证[J].压电与声光,2015,37(6):1030-1033 Lin H B, Yang G Z. Research on a precision positioning stage based on piezoelectric actuators and it's validation[J]. Piezoelectrics & Acoustooptics, 2015,37(6):1030-1033(in Chinese)
    [3] 胡俊峰,郝亚洲,徐贵阳,等.一种新型微操作平台的精确运动控制[J].机械科学与技术,2016,35(2):216-221 Hu J F, Hao Y Z, Xu G Y, et al. Precision motion control of a novel micro-manipulation stage[J]. Mechanical Science and Technology, 2016,35(2):216-221(in Chinese)
    [4] Ding B X, Li Y M. Design and analysis of a decoupled XY micro compliant parallel manipulator[C]//Proceedings of 2014 IEEE International Conference on Robotics and Biomimetics, December 5-10, 2014. Bali, Indonesia:IEEE, 2015:1898-1903
    [5] 胡俊峰,徐贵阳.一种新型4自由度柔顺并联机构的设计和特性[J].机械科学与技术,2014,33(4):496-500 Hu J F, Xu G Y. The design and properties of a novel 4-DOF compliant parallel mechanism[J]. Mechanical Science and Technology for Aerospace Engineering, 2014,33(4):496-500(in Chinese)
    [6] 范伟,林瑜阳,李钟慎.压电陶瓷驱动器的迟滞特性[J].光学精密工程,2016,24(5):1112-1117 Fan W, Lin Y Y, Li Z S. Hysteresis characteristics of piezoelectric ceramic actuators[J]. Optics and Precision Engineering, 2016,24(5):1112-1117(in Chinese)
    [7] 杜志元,闫鹏.基于桥式放大机构的柔顺位微定位平台的研究[J].机器人,2016,38(2):185-192 Du Z Y, Yan P. Analysis on compliant micro positioning stage based on bridge-type amplification mechanism[J]. Robot, 2016,38(2):185-192(in Chinese)
    [8] 卢倩,黄卫清,孙梦馨.基于柔度比优化设计杠杆式柔性铰链放大机构[J].光学精密工程,2016,24(1):102-111 Lu Q, Huang W Q, Sun M X. Optimization design of amplification mechanism for level flexure hinge based on compliance ratio[J]. Optics and Precision Engineering, 2016,24(1):102-111(in Chinese)
    [9] Ding B X, Li Y M, Xiao X, et al. Design and analysis of a 3-DOF planar micromanipulation stage with large rotational displacement for micromanipulation system[J]. Mechanical Sciences, 2017,8(1):117-126
    [10] Li Y M, Xu Q S. A novel piezoactuated XY stage with parallel, decoupled, and stacked flexure structure for micro-/nanopositioning[J]. IEEE Transactions on Industrial Electronics, 2011;58(8):3601-3615
    [11] 马立,谢炜,刘波,等.柔性铰链微定位平台的设计[J].光学精密工程,2014,22(2):338-345 Ma L, Xie W, Liu B, et al. Design of micro-positioning stage with flexure hinge[J]. Optics and Precision Engineering, 2014,22(2):338-345(in Chinese)
    [12] 沈剑英,张海军.新型桥式机构放大率的计算、分析和实验验证[J].仪器仪表学报,2015,36(8):1877-1883 Shen J Y, Zhang H J. Calculation, analysis and experimental verification of the magnification ratio for novel bridge-type mechanism[J]. Chinese Journal of Scientific Instrument, 2015,36(8):1877-1883(in Chinese)
    [13] 于月民,冷劲松.柔性微位移放大机构的设计与动力性能仿真分析[J].机械设计与研究,2011,27(3):48-51,55 Yu Y M, Leng J S. Design and dynamic performances simulation of a flexible micro-displacement amplification mechanism[J]. Machine Design and Research, 2011,27(3):48-51,55(in Chinese)
    [14] Li Y M, Xu Q S. Design and optimization of an XYZ parallel micromanipulator with flexure hinges[J]. Journal of Intelligent and Robotic Systems, 2009,55(4-5):377-402
    [15] Li Y M, Xu Q S. A totally decoupled piezo-driven XYZ flexure parallel micropositioning stage for micro/nanomanipulation[J]. IEEE Transactions on Automation Science and Engineering, 2011,8(2):265-279
    [16] 李仕华,龚文,姜珊,等.一种新型3-RPC柔性精密平台设计与分析[J].机械工程学报,2013,49(23):53-58 Li S H, Gong W, Jiang S, et al. Design and analysis of novel 3-RPC flexible precision platform[J]. Journal of Mechanical Engineering, 2013,49(23):53-58(in Chinese)
    [17] 杜云松,李铁民,姜峣,等.平面柔性铰链机构的柔度计算方法[J].清华大学学报(自然科学版),2016,56(6):633-639 Du Y S, Li T M, Jiang Y, et al. Compliance calculation method for planar flexure-based mechanisms[J]. Journal of Tsinghua University (Science & Technology), 2016,56(6):633-639(in Chinese)
  • 加载中
计量
  • 文章访问数:  251
  • HTML全文浏览量:  26
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-15
  • 刊出日期:  2018-05-05

目录

    /

    返回文章
    返回