留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe3Al表面划痕形变与切屑形成的分子动力学研究

彭俊 马艳 郭慧君

彭俊, 马艳, 郭慧君. Fe3Al表面划痕形变与切屑形成的分子动力学研究[J]. 机械科学与技术, 2018, 37(5): 704-708. doi: 10.13433/j.cnki.1003-8728.2018.0508
引用本文: 彭俊, 马艳, 郭慧君. Fe3Al表面划痕形变与切屑形成的分子动力学研究[J]. 机械科学与技术, 2018, 37(5): 704-708. doi: 10.13433/j.cnki.1003-8728.2018.0508
Peng Jun, Ma Yan, Guo Huijun. Molecular Dynamics Simulation of Surface Deformation and Piles Generation in Scratching on Fe3Al[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(5): 704-708. doi: 10.13433/j.cnki.1003-8728.2018.0508
Citation: Peng Jun, Ma Yan, Guo Huijun. Molecular Dynamics Simulation of Surface Deformation and Piles Generation in Scratching on Fe3Al[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(5): 704-708. doi: 10.13433/j.cnki.1003-8728.2018.0508

Fe3Al表面划痕形变与切屑形成的分子动力学研究

doi: 10.13433/j.cnki.1003-8728.2018.0508
基金项目: 

国家自然科学基金项目(61565004, 91123022)与广西高校光电信息处理重点实验室开放基金项目(KFJJ2014-01)资助

详细信息
    作者简介:

    彭俊(1990-),硕士研究生,研究方向为纳米机械加工,分子动力学,pengjun90a@outlook.com

    通讯作者:

    马艳,副教授,博士,mayan@tongji.edu.cn

Molecular Dynamics Simulation of Surface Deformation and Piles Generation in Scratching on Fe3Al

  • 摘要: 采用分子动力学方法研究AFM探针在铁铝合金表面划痕的形变特性。仔细分析了切屑的形成过程以及对沟槽形貌的影响。结果发现切屑的形成分为增长期和稳定期两个阶段,增长期切屑高度不断增加,稳定期切屑高度趋于稳定。探针后方出现粘连,随着探针的移动而分裂为两部分。另外,考察了划痕深度与划痕速度对切屑形成的影响。发现切屑高度随划痕深度的增加而增加,划痕速度的增加则不改变基底的形变特性,但会促使稳定期的提前到来。
  • [1] Carpick R W, Salmeron M. Scratching the surface:fundamental investigations of tribology with atomic force microscopy[J]. Chemical Reviews, 1997,97(4):1163-1194
    [2] Kim H J, Kim D E. Nano-scale friction:a review[J]. International Journal of Precision Engineering and Manufacturing, 2009,10(2):141-151
    [3] Wo P C, Ngan A H W. Incipient plasticity during nano-scratch in Ni3Al[J]. Philosophical Magazine, 2004,84(29):3145-3157
    [4] Junge T, Molinari J F. Plastic activity in nanoscratch molecular dynamics simulations of pure aluminium[J]. International Journal of Plasticity, 2014,53:90-106
    [5] Jun S, Lee Y, Youb Kim S, et al. Large-scale molecular dynamics simulations of Al(111) nanoscratching[J]. Nanotechnology, 2004,15(9):1169-1174
    [6] Gao Y, Brodyanski A, Kopnarski M, et al. Nanoscratching of iron:a molecular dynamics study of the influence of surface orientation and scratching direction[J]. Computational Materials Science, 2015,103:77-89
    [7] McKamey C G, DeVan J H, Tortorelli P F, et al. A review of recent developments on Fe sub 3 Al-based alloys[J]. Journal of Materials Research, 1991,6(8):1779-1805
    [8] Kim Y S, Kim Y H. Sliding wear behavior of Fe3Al-based alloys[J]. Materials Science and Engineering:A, 1998,258(1-2):319-324
    [9] Yang J, La P Q, Liu W M, et al. Tribological properties of FeAl intermetallics under dry sliding[J]. Wear, 2004,257(1-2):104-109
    [10] Erhart P, Albe K. Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide[J]. Physical Review B, 71(3):035211
    [11] Henriksson K O E, Björkas C, Nordlund K. Atomistic simulations of stainless steels:a many-body potential for the Fe-Cr-C system[J]. Journal of Physics:Condensed Matter, 2003,25(44):445401
    [12] Henriksson K O E, Nordlund K. Simulations of cementite:an analytical potential for the Fe-C system[J]. Physical Review B, 2009,79(14):144107
    [13] Zhao H Y, Chen N X. An inverse adhesion problem for extracting interfacial pair potentials for the Al(001)/3C-SiC(001) interface[J]. Inverse Problems, 2008,24(3):035019
    [14] Mendelev M I, Srolovitz D J, Ackland G J, et al. Effect of Fe segregation on the migration of a non-symmetric Σ5 tilt grain boundary in Al[J]. Journal of Materials Research, 2005,20(1):208-218
    [15] Li J, Van Vliet K J, Zhu T, et al. Atomistic mechanisms governing elastic limit and incipient plasticity in crystals[J]. Nature, 2002,418(6895):307-310
    [16] Zimmerman J A, Kelchner C L, Klein P A, et al. Surface step effects on nanoindentation[J]. Physical Review Letters, 2001,87(16):165507
    [17] Kelchner C L, Plimpton S J, Hamilton J C. Dislocation nucleation and defect structure during surface indentation[J]. Physical Review B, 1998,58(17):11085-11088
    [18] 赵菲菲.利用AFM机械刻划的切屑形成试验[J].中国农机化,2012,(1):185-188 Zhao F F. Study of nano-mechanical characterization of chip formation using atomic force microscopy[J]. Chinese Agricultural Mechanization, 2012,(1):185-188(in Chinese)
  • 加载中
计量
  • 文章访问数:  129
  • HTML全文浏览量:  15
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-19
  • 刊出日期:  2018-05-05

目录

    /

    返回文章
    返回