留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液力变矩器与发动机的功率匹配与转速感应控制

张泽宇 惠记庄 卜正锋 丁凯 谷立臣

张泽宇, 惠记庄, 卜正锋, 丁凯, 谷立臣. 液力变矩器与发动机的功率匹配与转速感应控制[J]. 机械科学与技术, 2018, 37(1): 55-62. doi: 10.13433/j.cnki.1003-8728.2018.0109
引用本文: 张泽宇, 惠记庄, 卜正锋, 丁凯, 谷立臣. 液力变矩器与发动机的功率匹配与转速感应控制[J]. 机械科学与技术, 2018, 37(1): 55-62. doi: 10.13433/j.cnki.1003-8728.2018.0109
Zhang Zeyu, Hui Jizhuang, Bu Zhengfeng, Ding Kai, Gu Lichen. Power Matching and Speed Sensing Control between Hydraulic Torque Converter and Engine[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(1): 55-62. doi: 10.13433/j.cnki.1003-8728.2018.0109
Citation: Zhang Zeyu, Hui Jizhuang, Bu Zhengfeng, Ding Kai, Gu Lichen. Power Matching and Speed Sensing Control between Hydraulic Torque Converter and Engine[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(1): 55-62. doi: 10.13433/j.cnki.1003-8728.2018.0109

液力变矩器与发动机的功率匹配与转速感应控制

doi: 10.13433/j.cnki.1003-8728.2018.0109
基金项目: 

国家科技支撑计划项目(2015BAF07B02)、中央高校创新团队项目(310825153403)及中央高校优秀博士生计划项目(310825175010)资助

详细信息
    作者简介:

    张泽宇(1990-),博士研究生,研究方向为工程机械机电液一体化、机械传动与控制,zhangzeyu@chd.edu.cn

    通讯作者:

    惠记庄,教授,博士生导师,huijz6363@chd.edu.cn

Power Matching and Speed Sensing Control between Hydraulic Torque Converter and Engine

  • 摘要: 为了提高装载机的工作性能,减小燃油消耗,对不同工况下液力变矩器与发动机的功率匹配与转速感应控制进行研究。根据装载机的作业方式,选择154 kW发动机的最佳工作曲线与340 mm的液力变矩器的主要工况点进行功率匹配。根据装载机的多参数工况识别与工况点的控制原则,对发动机进行转速感应控制。以50型装载机为研究对象,建立分工况转速感应传动系统模型,并与传统方式进行对比计算。结果表明:在铲掘工况下,装载机输出扭矩提高了约25.6%,综合燃油消耗量下降了21.6%;在卸载工况下,综合燃油消耗量从32 g/h下降到8.5 g/h;在行驶工况下,高效经济模式限制了发动机4%的输出功率,综合燃油消耗量降低了7.5%,最经济工况模式限制了发动机30%的输出功率,综合燃油消耗量降低了36.8%。
  • [1] Chi H W, Wei W, Yan Q D. Software development of steady numerical computational method of matching between hydrodynamic torque converter and engine[J]. Advanced Materials Research, 2011,199-200-323-328
    [2] 徐礼超,侯学明.基于典型工况的装载机发动机与液力变矩器匹配[J].农业工程学报,2015,31(7):80-84 Xu L C, Hou X M. Power matching on loader engine and hydraulic torque converter based on typical operating conditions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(7):80-84(in Chinese)
    [3] 刘树成,闫清东,邢庆坤.车用大功率柴油机与液力变矩器动态匹配影响因素分析[J].兵工学报,2016,37(3):385-393 Liu S C, Yan Q D, Xing Q K. Analysis of dynamic matching factors of high-power diesel engine and hydrodynamic torque converter[J]. Acta Armamentarii, 2016,37(3):385-393(in Chinese)
    [4] 陈淑清.ZL80装载机发动机与液力变矩器的匹配优化设计[D].长春:吉林大学,2008 Chen S Q. Optimization design of matching on Zl80 loader engine and hydrodynamic torque converter[D]. Changchun:Jilin University, 2008(in Chinese)
    [5] 陈凯,吴光强.基于遗传算法的液力变矩器与发动机匹配的多目标优化[J].汽车工程,2014,36(5):532-536 Chen K, Wu G Q. Genetic algorithm-based multi-objective optimization for the matching of torque converter with engine[J]. Automotive Engineering, 2014,36(5):532-536(in Chinese)
    [6] 王振宝,秦四成.基于典型工况液力变矩器匹配性能的优化[J].中南大学学报(自然科学版),2017,48(2):331-336 Wang Z B. Qin S C. Optimization of matching on torque converter with engine based on typical operating condition[J]. Journal of Central South University (Science and Technology), 2017,48(2):331-336(in Chinese)
    [7] 郑舒阳,金纯,罗维东.矿用汽车动力源功率匹配控制策略[J].交通运输工程学报,2015,15(1):82-91 Zheng S Y, Jin C, Luo W D. Power matching control strategy of power source for mine truck[J]. Journal of Traffic and Transportation Engineering, 2015,15(1):82-91(in Chinese)
    [8] 彭正虎,赵丽梅,吴怀超,等.基于遗传算法的装载机发动机与液力变矩器匹配优化分析[J].机床与液压,2017,45(11):126-130 Peng Z H, Zhao L M, Wu H C, et al. Based on genetic algorithm loader engine and hydraulic torque converter matching optimization analysis[J]. Machine Tool & Hydraulics, 2017,45(11):126-130(in Chinese)
    [9] 张泽宇,惠记庄,郑恒玉,等.旋挖钻机动力头液压系统全局功率匹配研究[J].机械科学与技术,2016,35(12):1834-1841 Zhang Z Y, Hui J Z, Zheng H Y, et al. Research of comprehensive power matching for rotary head's hydraulic system of rotary drilling rig[J]. Mechanical Science and Technology for Aerospace Engineering, 2016,35(12):1834-1841(in Chinese)
    [10] Saerens B, Vandersteen J, Persoons T, et al. Minimization of the fuel consumption of a gasoline engine using dynamic optimization[J]. Applied Energy, 2009,86(9):1582-1588
    [11] Li J, Wei W, Yan Q D. Study on instant original characteristic calculation and matching method for torque converter test automation[J]. Advanced Materials Research, 2012, 482-484:421-425
    [12] 王安麟,章明犬,郭威.面向液力变矩器负载的泵轮动态转矩估计模型[J].同济大学学报(自然科学版),2015,43(8):1219-1225 Wang A L, Zhang M Q, Guo W. Estimation model of pump wheel dynamic torque based on load of torque converter[J]. Journal of Tongji University (Nature Science), 2015,43(8):1219-1225(in Chinese)
    [13] 王安麟,章明犬,李文嘉,等.采用装载机整机实验的液力变矩器性能匹配指标[J].西安交通大学学报,2015,49(10):54-60 Wang A L, Zhang M Q, Li W J, et al. Performance matching index of torque converter based on loader tests[J]. Journal of Xi'an Jiaotong University, 2015,49(10):54-60(in Chinese)
    [14] Haggag S A, Elnahas N S. Event-based detection of the digging operation states of a wheel loader earth moving equipment[J]. International Journal of Heavy Vehicle Systems, 2013,20(2):157-173
    [15] Cardullo F, Stanco A, Kelly L, et al. A transfer of training study of control loader dynamics[C]//Proceedings of AIAA Modeling and Simulation Technologies Conference. Portland, OR, United States:AIAA, 2011:1-17
    [16] Choi S B. Sensorless adaptive speed control of a permanent-magnet dc motor for anti-lock brake systems[J]. International Journal of Automotive Technology, 2011,12(2):207-212
    [17] Chamsai T, Jirawattana P, Radpukdee T. Robust adaptive PID controller for a class of uncertain nonlinear systems:an application for speed tracking control of an SI engine[J]. Mathematical Problems in Engineering, 2015,2015:510738
    [18] Kusagur A, Kodad S F, Ram B V S. Novel design of a Takagi-Sugeno fuzzy strategy for induction motor speed control[J]. Journal of Electrical Systems, 2010,6(2):1-25
    [19] Malaczynski G, Roth G, Johnson D. Ion-sense-based real-time combustion sensing for closed loop engine control[J]. SAE International Journal of Engines, 2013,6(1):267-277
    [20] Oh K, Kim H, Ko K, et al. Integrated wheel loader simulation model for improving performance and energy flow[J]. Automation in Construction, 2015,58:129-143
    [21] Wang S F, Ji C W, Zhang B, et al. Realizing the part load control of a hydrogen-blended gasoline engine at the wide open throttle condition[J]. International Journal of Hydrogen Energy, 2014,39(14):7428-7436
    [22] Andersson P, Eriksson L, Nielsen L. Modeling and architecture examples of model based engine control[C]//Proceedings of the 2nd Conference on Computer Science and Systems Engineering. Sweden:Linköping, 1999:71-81
  • 加载中
计量
  • 文章访问数:  250
  • HTML全文浏览量:  32
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-11
  • 刊出日期:  2018-01-15

目录

    /

    返回文章
    返回