留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Z型航空液压管道布局参数对其模态特性影响研究

赵通来 刘伟 韦顺超 高行山

赵通来, 刘伟, 韦顺超, 高行山. Z型航空液压管道布局参数对其模态特性影响研究[J]. 机械科学与技术, 2017, 36(12): 1970-1974. doi: 10.13433/j.cnki.1003-8728.2017.1226
引用本文: 赵通来, 刘伟, 韦顺超, 高行山. Z型航空液压管道布局参数对其模态特性影响研究[J]. 机械科学与技术, 2017, 36(12): 1970-1974. doi: 10.13433/j.cnki.1003-8728.2017.1226
Zhao Tonglai, Liu Wei, Wei Shunchao, Gao Hangshan. Influence of Layout Parameters of Z-Layout Aircraft Hydraulic Pipeline on its Modal Characteristics[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(12): 1970-1974. doi: 10.13433/j.cnki.1003-8728.2017.1226
Citation: Zhao Tonglai, Liu Wei, Wei Shunchao, Gao Hangshan. Influence of Layout Parameters of Z-Layout Aircraft Hydraulic Pipeline on its Modal Characteristics[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(12): 1970-1974. doi: 10.13433/j.cnki.1003-8728.2017.1226

Z型航空液压管道布局参数对其模态特性影响研究

doi: 10.13433/j.cnki.1003-8728.2017.1226
基金项目: 

国家自然科学基金项目(51305350)、西北工业大学研究生创意创新种子基金项目(Z2016091)及西北工业大学基础研究基金项目(3102014JCQ01045)资助

详细信息
    作者简介:

    赵通来(1991-),硕士研究生,研究方向为航空液压管道动力学,zhaotl@mail.nwpu.edu.cn

    通讯作者:

    高行山(联系人),教授,博士生导师,gaohshan@nwpu.edu.cn

Influence of Layout Parameters of Z-Layout Aircraft Hydraulic Pipeline on its Modal Characteristics

  • 摘要: 飞机液压管道系统存在大量用来连接两个轴向错位接头的Z型管道,不同布局的Z型管道具有不同的模态特性。Z型管道布局由弯头位置及弯管曲率半径这两个参数确定。通过模态试验结合数值仿真研究这两个布局参数对管道模态特性的影响规律。研究发现,Z型管道的1阶模态出现在垂直于管道平面方向上,2阶模态出现在管道平面。当弯头位置从靠近一端接头变化到与两端接头距离相等的位置时,管道的1阶固有频率增大,而2阶固有频率减小;当曲率半径增大时,管道的低阶固有频率都增大。
  • [1] Tijsseling A S. Fluid-structure interaction in liquid-filled pipe systems:a review[J]. Journal of Fluids and Structures, 1996,10(2):109-146
    [2] Hambric S A, Boger D A, Fahnline J B, et al. Structure-and fluid-borne acoustic power sources induced by turbulent flow in 90° piping elbows[J]. Journal of Fluids and Structures, 2010,26(1):121-147
    [3] Lee C J K, Noguchi H, Koshizuka S. Fluid-shell structure interaction analysis by coupled particle and finite element method[J]. Computers & Structures, 2007,85(11-14):688-697
    [4] 付永领,荆慧强.弯管转角对液压管道振动特性影响分析[J].振动与冲击,2013,32(13):165-169 Fu Y L, Jing H Q. Elbow angle effect on hydraulic pipeline vibration characteristics[J]. Journal of Vibration and Shock, 2013,32(13):165-169(in Chinese)
    [5] 赵子琴,李树勋,徐登伟,等.管道振动的减振方案及工程应用[J].管道技术与设备,2011,(3):54-56 Zhao Z Q, Li S X, Xu D W, et al. Damping program of pipeline vibration and engineering application[J]. Pipeline Technique and Equipment, 2011,(3):54-56(in Chinese)
    [6] 贾志刚,陈志英.基于参数化的航空发动机管路调频方法研究[J].航空发动机,2008,34(4):34-37 Jia Z G, Chen Z Y. Investigation of frequency modulation for aeroengine pipeline based on parameterization[J]. Aeroengine, 2008,34(4):34-37(in Chinese)
    [7] Vardy A E, Fan D, Tijsseling A S. Fluid-structure interaction in a T-piece pipe[J]. Journal of Fluids and Structures, 1996,10(7):763-786
    [8] Tijsseling A S, Vardy A E, Fan D. Fluid-structure interaction and cavitation in a single-elbow pipe system[J]. Journal of Fluids and Structures, 1996,10(4):395-420
    [9] Tijsseling A S, Vaugrante P. FSI in L-shaped and T-shaped pipe systems[M]. Eindhoven:Technische Universiteit Eindhoven, 2001
    [10] Davidson L C, Smith J E. Liquid-structure coupling in curved pipes[J]. Shock and Vibration Bulletin, 1969,40(4):197-207
    [11] Xu Y Z, Johnston D N, Jiao Z X, et al. Frequency modelling and solution of fluid-structure interaction in complex pipelines[J]. Journal of Sound and Vibration, 2014,333(10):2800-2822
    [12] 国防科学技术工业委员会.HB 4-55-2002导管弯曲半径[S].北京:中国标准出版社,2003
    [13] 陈果,罗云,郑其辉,等.复杂空间载流管道系统流固耦合动力学模型及其验证[J].航空学报,2013,34(3):597-609 Chen G, Luo Y, Zheng Q H, et al. Fluid-structure coupling dynamic model of complex spatial fluid-conveying pipe system and its verification[J]. Acta Aeronautica et Astronautica Sinica, 2013,34(3):597-609(in Chinese)
    [14] 鲁华平,贾普荣,刘永寿,等.基于模态测试的航空管道动力学响应实验与分析[J].中国机械工程,2012,23(16):1925-1929 Lu H P, Jia P R, Liu Y S, et al. Dynamics response experiment and analysis of aviation pipeline based on modal test[J]. China Mechanical Engineering, 2012,23(16):1925-1929(in Chinese)
    [15] 章罡本,陈刚,彭学院.基于LMS Test.lab的压缩机管道振动测试与分析[J].压缩机技术,2006,(5):5-7 Zhang G B, Chen G, Peng X Y. LMS test. lab-based compressor piping vibration measurement and analysis[J]. Compressor Technology, 2006,(5):5-7(in Chinese)
    [16] 杨飞益.复杂空间管道系统动力特性分析与实验验证[D].南京:南京航空航天大学,2012 Yang F Y. Dynamic analysis of complex spatial pipeline system and its experimental verification[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012(in Chinese)
    [17] 潘坤.航空发动机液压管路振动实验研究[D].沈阳:东北大学,2011 Pan K. Research of experiment of aero-engine hydraulic pipeline vibration[D]. Shenyang:Northeastern University, 2011(in Chinese)
    [18] Paidoussis M P. Fluid-structure interactions:slender structures and axial flow[M]. Amsterdam:Elsevier Ltd., 2016
    [19] 姜峰,郑运虎,梁瑞,等.海洋立管湿模态振动分析[J].西南石油大学学报(自然科学版),2015,37(5):159-166 Jiang F, Zheng Y H, Liang R, et al. An analysis of the wet modal vibration of marine riser[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015,37(5):159-166(in Chinese)
    [20] 唐春丽,方开翔.充液管道的模态试验分析[J].华东船舶工业学院学报(自然科学版),2002,16(1):69-71 Tang C L, Fang K X. Analysis on mode experiments of liquid-filled pipe[J]. Journal of East China Shipbuilding Institute (Natural Sciences Edition), 2002,16(1):69-71(in Chinese)
  • 加载中
计量
  • 文章访问数:  227
  • HTML全文浏览量:  37
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-07
  • 刊出日期:  2017-12-15

目录

    /

    返回文章
    返回