留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

300M超高强度钢高速切削过程仿真研究

张慧萍 刘壬航 李珍灿 张庆宇

张慧萍, 刘壬航, 李珍灿, 张庆宇. 300M超高强度钢高速切削过程仿真研究[J]. 机械科学与技术, 2017, 36(10): 1550-1555. doi: 10.13433/j.cnki.1003-8728.2017.1011
引用本文: 张慧萍, 刘壬航, 李珍灿, 张庆宇. 300M超高强度钢高速切削过程仿真研究[J]. 机械科学与技术, 2017, 36(10): 1550-1555. doi: 10.13433/j.cnki.1003-8728.2017.1011
Zhang Huiping, Liu Renhang, Li Zhencan, Zhang Qingyu. Finite Element Simulation of High Speed Cutting Processing of 300M Ultra-high Strength Steel[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(10): 1550-1555. doi: 10.13433/j.cnki.1003-8728.2017.1011
Citation: Zhang Huiping, Liu Renhang, Li Zhencan, Zhang Qingyu. Finite Element Simulation of High Speed Cutting Processing of 300M Ultra-high Strength Steel[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(10): 1550-1555. doi: 10.13433/j.cnki.1003-8728.2017.1011

300M超高强度钢高速切削过程仿真研究

doi: 10.13433/j.cnki.1003-8728.2017.1011
基金项目: 

国家自然科学基金项目(51575145)资助

详细信息
    作者简介:

    张慧萍(1973-),副教授,博士,研究方向为高速切削及难加工材料切削加工技术,zhping302@163.com

Finite Element Simulation of High Speed Cutting Processing of 300M Ultra-high Strength Steel

  • 摘要: 针对300M超高强度钢切削加工性较差的问题,通过有限元仿真技术对300M钢的高速切削过程进行研究。在相关试验数据的基础上,创建高速切削仿真模型,研究切削过程中切屑形态、切削区的应力分布,以及切削速度、刀具几何角度的变化对切削力、切削温度的影响规律。仿真结果分析表明:仿真数据与试验数据的变化趋势基本相同,切削速度增大,切削温度随之升高,切削力先升高后下降;前角角度增大,切削力和切削温度都较大程度下降,应力向刀尖与工件接触区集中;后角增大,切削力和切削温度略有下降,但变化幅度较小。
  • [1] 张慧萍,王崇勋,杜旭.飞机起落架用300M钢超高强钢发展及研究现状[J]. 哈尔滨理工大学学报,2011,16(6):73-76 Zhang H P, Wang C X, Du X. Aircraft landing gear with the development of 300m ultra high strength steel and research[J]. Journal of Harbin University of Harbin University of Science and Technology,2011,16(6):73-76(in Chinese)
    [2] Varela P I, Rakurty C S, Balaji A K. Surface integrity in hard machining of 300 m steel:effect of cutting-edge geometry on machining induced residual stresses[J]. Procedia Cirp, 2014, 13(4):288-293
    [3] Du G C, Chen Y, Zhang J F, et al. Finite element simulation of high-speed hard cutting[J]. Advanced Materials Research, 2011, 308-310(1):1465-1470
    [4] 徐看, 黄艳玲, 吕彦明. 金属切削过程有限元仿真技术研究[J]. 工具技术, 2013, 47(11):7-11 Xu K, Huang Y L, Lv Y M. Metal cutting process finite element simulation technology[J]. Tool Engineering, 2013, 47(11):7-11(in Chinese)
    [5] 代玉娟. 机械微细加工过程性能分析仿真研究[D]. 山东淄博:山东理工大学, 2012 Dai Y J. Research on the simuliation analysis for the performance of machanical micro machining processes[D]. Shandong Zibo:Shandong University of Technology, 2012(in Chinese)
    [6] 沙智华, 葛研军, 赵亮,等. 切削加工仿真建模技术研究[J]. 系统仿真学报, 2005, 17(4):789-792 Sha Z H, Ge Y J, Zhao L, et al. A review on modeling technology to machining simulation[J]. Journal of System Simulation, 2005, 17(4):789-792(in Chinese)
    [7] 于海鹏, 赵中里, 吴大鸣,等. 不同材料的椭圆振动切削特性研究[J]. 机械设计与制造, 2014,(5):63-66 Yu H P, Zhao Z L, Wu D M, et al. Research on characteristics of elliptical vibration cutting different materials[J]. Machinery Design and Manufacture, 2014,(5):63-66(in Chinese)
    [8] Özel T, Altan T. Process simulation using finite element method-prediction of cutting forces, tool stresses and temperatures in high-speed flat end milling[J]. International Journal of Machine Tools & Manufacture, 2000, 40(99):713-738
    [9] 魏效玲, 王剑锋. 基于DEFORM的刀具几何参数与切削力关系的研究[J]. 组合机床与自动化加工技术, 2014(11):11-13 Wei X L, Wang J F. A study on cutting parameters and cutting force based on DEFORM[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2014(11):11-13(in Chinese)
    [10] Zheng X, Qi Z I, Zhang G Z. Simulation on process of orthogonal cutting[J]. Computer Aided Engineering, 2007,16(4):40-46
    [11] 王明海, 王京刚, 郑耀辉,等. 钛合金Ti6Al4V铣削有限元仿真分析[J]. 制造业自动化, 2013(22):42-45 Wang M H, Wang J G, Zheng Y H, et al. Finite element analysis of milling titanium alloy Ti6Al4V[J]. Manufacturing Automation, 2013(22):42-45(in Chinese)
    [12] 杨亮. 塑性材料超声振动精密切削技术的研究[D]. 哈尔滨:哈尔滨工业大学, 2007 Yang L. Study of ultrasonic vibration precision cutting for plastic material[D]. Harbin:Harbin Institute of Technology, 2007(in Chinese)
    [13] 詹斌, 刘宁, 杨海东,等. 后角对纳米TiN改性Ti(C,N)基金属陶瓷刀具磨损性能的影响[J]. 热处理, 2012, 27(6):28-33 Zhan B, Liu N, Yang H D, et al. Effects of clearance angle on the wear behavior of Ti (C, N)-based cermet tool modified by nano-TiN[J]. Heat Treatment, 2012, 27(6):28-33(in Chinese)
    [14] Yen D W, Wright P K. A remote temperature sensing technique for estimating the cutting interface temperature distribution[J]. Journal of Engineering for Industry, 1986, 108(4):252-263
    [15] Sulaiman S, Roshan A, Ariffin M K A. Finite element modelling of the effect of tool rake angle on tool temperature and cutting force during high speed machining of AISI 4340 steel[C]. 2nd International Conference on Mechanical Engineering Research (ICMER),Kuantan, MALAYSIA, 2013,50(1)
    [16] 徐志平. 基于有限元方法的切削加工过程动态物理仿真关键技术研究[D]. 济南:山东大学, 2008 Xu Z P. Study on the Key Technologies of dynamic physical simulation of machining process based on finite element method[D]. Jinan:Shandong University, 2008(in Chinese)
  • 加载中
计量
  • 文章访问数:  287
  • HTML全文浏览量:  26
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-27
  • 刊出日期:  2017-10-05

目录

    /

    返回文章
    返回