留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进的势场法路径规划算法

胡小平 李泽玉

胡小平, 李泽玉. 一种改进的势场法路径规划算法[J]. 机械科学与技术, 2017, 36(10): 1521-1529. doi: 10.13433/j.cnki.1003-8728.2017.1007
引用本文: 胡小平, 李泽玉. 一种改进的势场法路径规划算法[J]. 机械科学与技术, 2017, 36(10): 1521-1529. doi: 10.13433/j.cnki.1003-8728.2017.1007
Hu Xiaoping, Li Zeyu. An Improved Potential Field Method for Robot Path Planning[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(10): 1521-1529. doi: 10.13433/j.cnki.1003-8728.2017.1007
Citation: Hu Xiaoping, Li Zeyu. An Improved Potential Field Method for Robot Path Planning[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(10): 1521-1529. doi: 10.13433/j.cnki.1003-8728.2017.1007

一种改进的势场法路径规划算法

doi: 10.13433/j.cnki.1003-8728.2017.1007
基金项目: 

国家自然科学基金项目(61572185,60975069)与湖南省科技计划项目(2014GK3160)资助

详细信息
    作者简介:

    胡小平(1962-),教授,博士,研究方向为机器人控制技术,智能控制技术,hxp210@163.com

An Improved Potential Field Method for Robot Path Planning

  • 摘要: 在应用传统人工势场法的移动机器人路径规划问题中,机器人对移动障碍物避障效率较低,路径中存在局部极小点。针对这些缺陷,构建了一种基于势流理论的势场模型。在该模型中,势流理论中的概念与路径规划中的概念一一对应,修正函数解决了势流理论中与路径规划问题的矛盾之处,如点汇处速度无穷大等。为了保证对移动障碍物避障的可靠性,应用茹科夫斯基变换对势场分布及函数进行了改进。模型经改进后,为解决局部极小问题,本文进一步使用了点涡的概念,此后又加入虚拟点源以优化轨迹。最后,讨论了多障碍物势场加权叠加方法。仿真实验中,在多种避障情景下对比了改进前后的势场法。仿真结果表明,改进势场能够引导机器人对移动障碍物进行灵活避障,在避免局部极小点时较传统方法更为有效。
  • [1] Khatib O. Real-time obstacle avoidance for manipulators and mobile robots[J]. International Journal of Robotics Research, 1986,5(1):90-98
    [2] Akishita S, Kawamura S, Hayashi K. New navigation function utilizing hydrodynamic potential for mobile robot[C]//Proceedings of IEEE International Workshop on Intelligent Motion Control. Istanbul, Turkey:IEEE, 1990:413-417
    [3] Akishita S, Kawamura S, Hisanobu T. Velocity potential approach to path planning for avoiding moving obstacles[J]. Advanced Robotics, 1992,7(5):463-478
    [4] Khosla P, Volpe R. Superquadric artificial potentials for obstacle avoidance and approach[C]//Proceedings of IEEE International Conference on Robotics and Automation. Philadelphia, PA:IEEE, 1988:1778-1784
    [5] 朱大奇,颜明重.移动机器人路径规划技术综述[J].控制与决策,2010,25(7):961-967 Zhu D Q, Yan M Z. Survey on technology of mobile robot path planning[J]. Control and Decision, 2010,25(7):961-967(in Chinese)
    [6] 张殿富,刘福.基于人工势场法的路径规划方法研究及展望[J].计算机工程与科学,2013,25(6):88-95 Zhang D F, Liu F. Research and development trend of path planning based on artificial potential field method[J]. Computer Engineering & Science, 2013,25(6):88-95(in Chinese)
    [7] Mabrouk M H, Mcinnes C R. Solving the potential field local minimum problem using internal agent states[J]. Robotics and Autonomous Systems, 2008,56(12):1050-1060
    [8] 姚鹏,王宏伦.基于改进流体扰动算法与灰狼优化的无人机三维航路规划[J].控制与决策,2016,31(4):701-708 Yao P, Wang H L. Three-dimensional path planning for UAV based on improved interfered fluid dynamical system and grey wolf optimizer[J]. Control and Decision, 2016,31(4):701-708(in Chinese)
    [9] Kovács B, Szayer G, Tajti F, et al. A novel potential field method for path planning of mobile robots by adapting animal motion attributes[J]. Robotics and Autonomous Systems, 2016,82:24-34
    [10] Macktoobian M, Shoorehdeli M A. Time-variant artificial potential field (TAPF):a breakthrough in power-optimized motion planning of autonomous space mobile robots[J]. Robotica, 2016,34(5):1128-1150
    [11] 曲成刚,曹喜滨,张泽旭.人工势场和虚拟领航者结合的多智能体编队[J].哈尔滨工业大学学报,2014,46(5):1-5 Qu C G, Cao X B, Zhang Z X. Multi-agent system formation integrating virtual leaders into artificial potentials[J]. Journal of Harbin Institute of Technology, 2014,46(5):1-5(in Chinese)
    [12] 代冀阳,王村松,殷林飞,等.飞行器分层势场路径规划算法[J].控制理论与应用,2015,32(11):1505-1510 Dai J Y, Wang C S, Yin L F, et al. Hierarchical potential field algorithm of path planning for aircraft[J]. Control Theory & Applications, 2015,32(11):1505-1510(in Chinese)
    [13] Waydo S, Murray R M. Vehicle motion planning using stream functions[C]//Proceedings of IEEE International Conference on Robotics and Automation. Taipei, Taiwan:IEEE, 2003:2484-2491
    [14] Qureshi A H, Ayaz Y. Potential functions based sampling heuristic for optimal path planning[J]. Autonomous Robots, 2016,40(6):1079-1093
    [15] Kim D H, Shin S. Local path planning using a new artificial potential function composition and its analytical design guidelines[J]. Advanced Robotics, 2006,20(1):115-135
    [16] Lamb H. Hydrodynamics[M]. 6th ed. Cambridge:Cambridge University Press, 1975
    [17] 欧特尔H.普朗特流体力学基础[M].朱自强,钱翼稷,李宗瑞译.北京:科学出版社,2008 Oertel H. Prandtl's fluid mechanics foundation[M]. Zhu Z Q, Qian Y J, Li Z R, trans. Beijing:Science Press, 2008(in Chinese)
    [18] 王献孚,熊鳌魁.高等流体力学[M].武汉:华中科技大学出版社,2003 Wang X F, Xiong A K. Advanced fluid mechanics[M]. Wuhan:The Huazhong University of Science and Technology Press, 2003(in Chinese)
    [19] Park M G, Lee M C. A new technique to escape local minimum in artificial potential field based path planning[J]. KSME International Journal, 2003,17(12):1876-1885
  • 加载中
计量
  • 文章访问数:  235
  • HTML全文浏览量:  30
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-29
  • 刊出日期:  2017-10-05

目录

    /

    返回文章
    返回