留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空液压管道卡箍等效刚度及其影响因素研究

李枫 刘伟 韦顺超 刘永寿

李枫, 刘伟, 韦顺超, 刘永寿. 航空液压管道卡箍等效刚度及其影响因素研究[J]. 机械科学与技术, 2017, 36(9): 1472-1476. doi: 10.13433/j.cnki.1003-8728.2017.0926
引用本文: 李枫, 刘伟, 韦顺超, 刘永寿. 航空液压管道卡箍等效刚度及其影响因素研究[J]. 机械科学与技术, 2017, 36(9): 1472-1476. doi: 10.13433/j.cnki.1003-8728.2017.0926
Li Feng, Liu Wei, Wei Shunchao, Liu Yongshou. Research on Equivalent Stiffness and Influence Factors of Aero-clamps for Aircraft Hydraulic Pipelines[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(9): 1472-1476. doi: 10.13433/j.cnki.1003-8728.2017.0926
Citation: Li Feng, Liu Wei, Wei Shunchao, Liu Yongshou. Research on Equivalent Stiffness and Influence Factors of Aero-clamps for Aircraft Hydraulic Pipelines[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(9): 1472-1476. doi: 10.13433/j.cnki.1003-8728.2017.0926

航空液压管道卡箍等效刚度及其影响因素研究

doi: 10.13433/j.cnki.1003-8728.2017.0926
基金项目: 

国家自然科学基金项目(51305350)与西北工业大学基础研究基金项目(3102014JCQ01045)资助

详细信息
    作者简介:

    李枫(1991-),硕士研究生,研究方向为包含弱支撑的复杂管道流固耦合振动研究,fengli@mail.nwpu.edu.cn

    通讯作者:

    刘伟(联系人),副教授,博士,liuwei@nwpu.edu.cn

Research on Equivalent Stiffness and Influence Factors of Aero-clamps for Aircraft Hydraulic Pipelines

  • 摘要: 采用实验方法确定了某型航空液压管道带垫卡箍的等效刚度并研究了管径、温度对刚度的影响。利用带温度箱的电子拉力试验机,测定了不同管径的单点固定带垫卡箍在不同温度(-50 ℃~125 ℃)下的等效刚度。研究表明:卡箍Y方向的等效刚度约为X方向等效刚度的1/4;室温环境中,卡箍管径从6 mm增加到12 mm,卡箍X方向等效刚度下降33.6%,卡箍Y方向等效刚度下降了49.6%;卡箍刚度对环境温度十分敏感,随着温度升高,不同管径卡箍刚度均有大幅下降,当温度高于80 ℃时卡箍夹紧力降低,并出现打滑现象。最后,建立了考虑温度场变化的卡箍细节有限元接触模型,利用该模型计算了不同影响因素下的卡箍刚度,预测结果与试验数据吻合良好。
  • [1] 郑敏,景绿路,孙忠志,等.新型带垫卡箍的研究[J].飞机设计,2008,28(4):28-33 Zheng M, Jing L L, Sun Z Z, et al. Development of new type clamp with pillow[J]. Aircraft Design, 2008,28(4):28-33(in Chinese)
    [2] 郑敏,章怡宁,景绿路,等.国外新型带垫固定卡箍分析[J].航空标准化与质量,2009,(5):12-16,45 Zheng M, Zhang Y N, Jing L L, et al. Analysis of a new type of foreign fixed clamp with pillow[J]. Aeronautic Standardization & Quality, 2009,(5):12-16,45(in Chinese)
    [3] 王宝珍,胡时胜,周相荣.不同温度下橡胶的动态力学性能及本构模型研究[J].实验力学,2007,22(1):1-6 Wang B Z, Hu S S, Zhou X R. Research of dynamic mechanical behavior and constitutive model of rubber under different temperatures[J]. Journal of Experimental Mechanics, 2007,22(1):1-6(in Chinese)
    [4] Society of Automotive Engineers. SAE ARP 1897-1990-R2007 Clamp Selection and Installation Guide[M]. SAE, 1990
    [5] Dekker C J, Stikvoort W J. Improved design rules for pipe clamp connectors[J]. International Journal of Pressure Vessels and Piping, 2004,81(2):141-157
    [6] 郑敏,王宗武,张艳,等.航空卡箍选用装配研究[J].航空标准化与质量准,2015,(2):23-26,42 Zheng M, Wang Z W, Zhang Y, et al. Analysis of selection and Installation for aircraft clamp[J]. Aeronautic Standardization & Quality, 2015,(2):23-26,42(in Chinese)
    [7] 尹泽勇,陈亚农.卡箍刚度的有限元计算与实验测定[J].航空动力学报,1999,14(2):179-182 Yin Z Y, Chen Y N. Finite element analysis and experimental measurement of stiffness of hoop[J]. Journal of Aerospace Power, 1999,14(2):179-182(in Chinese)
    [8] 国防科学技术工业委员会.HB3-25-2002《带垫的夹紧卡箍》[S].北京:中国标准出版社,2000:1-9 COSTIND. HB3-25-2002《rip clamp with cushion》[S]. Beijing:Chinese Specification Press, 2000:1-9(in Chinese)
    [9] 国防科学技术工业委员会.HB7647-2004《固定导管的环形卡箍通用规范》[S].北京:中国标准出版社,2004:1-8 COSTIND. HB 7647-2004《pecification for clamp loop fixed tube》[S]. Beijing:Chinese Specification Press, 2004:1-8(in Chinese)
    [10] Mirzadeh H. Simple physically-based constitutive equations for hot deformation of 2024 and 7075 aluminum alloys[J]. Transactions of Nonferrous Metals Society of China, 2015,25(5):1614-1618
    [11] Yamabe J, Koga A, Nishimura S. Failure behavior of rubber O-ring under cyclic exposure to high-pressure hydrogen gas[J]. Engineering Failure Analysis, 2013,35:193-205
    [12] Yamabe J, Nishimura S. Crack growth behavior of sealing rubber under static strain in high-pressure hydrogen gas[J]. Journal of Solid Mechanics and Materials Engineering, 2011,12(5):690-701
    [13] 任彦,孙金菊.铝合金的低温机械性能评估[J].低温工程,2009,(2):56-60 Ren Y, Sun J J. Evaluation of mechanical properties for aluminum alloys in low temperature[J]. Cryogenics, 2009,(2):56-60(in Chinese)
    [14] 田涛.高强铝合金热变形行为研究[D].秦皇岛:燕山大学,2011 Tian T. Hot deformation behavior of high strength aluminum alloys[D]. Qinhuangdao:Yanshan University, 2011(in Chinese)
    [15] 蒋显全,蒋诗琪,齐宝,等.铝合金高低温力学性能研究及应用前景[J].世界有色金属,2015,(10):20-25 Jiang X Q, Jiang S Q, Qi B, et al. The study and application prospect on low-temperature mechanical properties of aluminium alloy[J]. World Nonferrous Metals, 2015,(10):20-25(in Chinese)
    [16] 陈鼎,陈振华.铝合金在低温下的力学性能[J].宇航材料工艺,2000,30(4):1-7 Chen D, Chen Z H. Mechanical properties of pure aluminum alloys at cryogenic temperatures[J]. Aerospace Materials & Technology, 2000,30(4):1-7(in Chinese)
  • 加载中
计量
  • 文章访问数:  241
  • HTML全文浏览量:  31
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-02
  • 刊出日期:  2017-09-05

目录

    /

    返回文章
    返回