留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泡沫铝材料参数反求及其填充锥形薄壁管的吸能性能研究

黄晶 龙永程 曹娇 胡林

黄晶, 龙永程, 曹娇, 胡林. 泡沫铝材料参数反求及其填充锥形薄壁管的吸能性能研究[J]. 机械科学与技术, 2017, 36(5): 798-804. doi: 10.13433/j.cnki.1003-8728.2017.0523
引用本文: 黄晶, 龙永程, 曹娇, 胡林. 泡沫铝材料参数反求及其填充锥形薄壁管的吸能性能研究[J]. 机械科学与技术, 2017, 36(5): 798-804. doi: 10.13433/j.cnki.1003-8728.2017.0523
Huang Jing, Long Yongcheng, Cao Jiao, Hu Lin. Research on Energy Absorbed Prosperity of Aluminum Foam and Material Parameter Identification of Foam-filled Taper Thin-walled Tube[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(5): 798-804. doi: 10.13433/j.cnki.1003-8728.2017.0523
Citation: Huang Jing, Long Yongcheng, Cao Jiao, Hu Lin. Research on Energy Absorbed Prosperity of Aluminum Foam and Material Parameter Identification of Foam-filled Taper Thin-walled Tube[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(5): 798-804. doi: 10.13433/j.cnki.1003-8728.2017.0523

泡沫铝材料参数反求及其填充锥形薄壁管的吸能性能研究

doi: 10.13433/j.cnki.1003-8728.2017.0523
基金项目: 

国家自然科学基金项目(11202077,51475048)与湖南省自然科学基金项目(14JJ3060)资助

详细信息
    作者简介:

    黄晶(1980-),助理教授,博士,硕士生导师,研究方向为车辆与交通安全,损伤生物力学,huangjing926@163.com

Research on Energy Absorbed Prosperity of Aluminum Foam and Material Parameter Identification of Foam-filled Taper Thin-walled Tube

  • 摘要: 为了研究一种商业化生产的泡沫铝力学性能并对其填充结构进行仿真模拟,基于材料的准静态压缩试验和材料本构模型进行了泡沫铝和铝合金材料参数反求,并采用试验数据验证了所得材料参数的正确性。运用有限元软件LS-DYNA进行数值分析,研究了壁厚、锥角和填充泡沫铝密度等设计参数对泡沫铝填充锥形薄壁管吸能特性的影响。结果表明,利用材料反求的方法可获得准确的材料参数;泡沫铝密度和壁厚对平均力的影响更为显著,相比于锥角更易控制能量吸收;管壁厚度是影响初始峰值力的主要因素;填充泡沫铝后不仅能够改善薄壁管的变形情况、增大比吸能,且对初始峰值力的影响较小。
  • [1] 陈文革,张强.泡沫金属的特点、应用、制备与发展[J].粉末冶金工业,2005,15(2):37-42 Chen W G, Zhang Q. Characteristics application fabrication and development of porous metals[J]. Powder Metallurgy Industry, 2005,15(2):37-42(in Chinese)
    [2] 程涛,向宇,李健,等.泡沫铝在汽车工业中的应用[J].轻金属,2009,(8):71-75 Cheng T, Xiang Y, Li J, et al. Application of aluminium foam in automotive industry[J]. Light Metals, 2009,(8):71-75(in Chinese)
    [3] Hanssen A G, Langseth M, Hopperstad O S. Static and dynamic crushing of square aluminium extrusions with aluminium foam filler[J]. International Journal of Impact Engineering, 2000,;4(4):347-383
    [4] Hanssen A G, Hopperstad O S, Langseth M, et al. Validation of constitutive models applicable to aluminium foams[J]. International Journal of Mechanical Sciences, 2002,44(2):359-406
    [5] 董庆战,杨济匡.泡沫铝填充在轿车B柱中的侧面耐撞性研究[J].计算机仿真,2014,31(11):150-154 Dong Q Z, Yang J K. Crashworthiness research of vehicle with B-pillar filled with aluminum foam[J]. Computer Simulation, 2014,31(11):150-154(in Chinese)
    [6] 曾繁波,兰凤崇,陈吉清,等.泡沫铝结构的吸能特性影响参数试验分析[J].机械设计与制造,2014,(9):14-18 Zeng F B, Lan F C, Chen J Q, et al. Experimental analysis on influence factors of energy absorption of aluminum foam structures[J]. Machinery Design & Manufacture, 2014,(9):14-18(in Chinese)
    [7] 张勇,林福泳.铝泡沫填充薄壁结构耐撞可靠性优化设计[J].机械工程学报,2011,47(22):93-99 Zhang Y, Lin F Y. Crashworthiness reliability design optimization of aluminum foam filled thin-wall structures[J]. Journal of Mechanical Engineering, 2011,47(22):93-99(in Chinese)
    [8] 中华人民共和国国家质量监督检验检疫总局.中人共准金属材料室温拉伸试验方法[S].北京:中国标准出版社,2002 The State Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Metallic materials-Tensile testing at ambient temperature[S]. Beijing:Standards Press of China, 2002(in Chinese)
    [9] Deshpande V S, Fleck N A. Isotropic constitutive models for metallic foams[J]. Journal of the Mechanics and Physics of Solids, 2000,;8(6-7):1253-1283
    [10] Sun G Y, Song X G, Baek S, et al. Robust optimization of foam-filled thin-walled structure based on sequential Kriging metamodel[J]. Structural and Multidisciplinary Optimization, 2014,49(6):897-913
    [11] Mata H, Santos A D, Parente M P L, et al. Study on the forming of sandwich shells with closed-cell foam cores[J]. International Journal of Material Forming, 2014,7(4):413-424
    [12] De Giorgi M, Carofalo A, Dattoma V, et al. Aluminium foams structural modelling[J]. Computers & Structures, 2010,88(1-2):25-35
    [13] Hallquist J O. LS-DYNA theoretical manual[M]. Livermore:Livermore Software Technology Corporation, 1998
    [14] 赵海鸥.LS-DYNA动力分析指南[M].北京:兵器工业出版社,2003 Zhao H O. LS-DYNA dynamic analysis of guide[M]. Beijing:Weapons Industry Publishing House, 2003(in Chinese)
    [15] Bi J. Constitutive modeling of aluminum foam and finite element implementation for crash simulations[D]. Carolina:The University of North Carolina, 2012
    [16] Reyes A, Hopperstad O S, Berstad T, et al. Constitutive modeling of aluminum foam including fracture and statistical variation of density[J]. European Journal of Mechanics-A/Solids, 2003,;2(6):815-835
    [17] 彭洪梅,胡平,申国哲,等.薄壁直梁碰撞性能仿真和参数影响分析[J].汽车工程,2011,33(9):782-786 Peng H M, Hu P, Shen G Z, et al. Crashworthiness simulation and parameter effects analysis of thin-walled column[J]. Automotive Engineering, 2011,33(9):782-786(in Chinese)
    [18] 万鑫铭,徐小飞,徐中明,等.汽车用铝合金吸能盒结构优化设计[J].汽车工程学报,2013,3(1):15-21 Wan X M, Xu X F, Xu Z M, et al. Structure optimization design of aluminum alloy energy-absorbing box for automotives[J]. Chinese Journal of Automotive Engineering, 2013,3(1):15-21(in Chinese)
    [19] Gupta N K, Venkatesh. Experimental and numerical studies of impact axial compression of thin-walled conical shells[J]. International Journal of Impact Engineering, 2007,34(4):708-720
    [20] Ahmad Z, Thambiratnam D P. Dynamic computer simulation and energy absorption of foam-filled conical tubes under axial impact loading[J]. Computers & Structures, 2009,87(3-4):186-197
  • 加载中
计量
  • 文章访问数:  147
  • HTML全文浏览量:  22
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-16
  • 刊出日期:  2017-05-05

目录

    /

    返回文章
    返回