留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PNP模型的正弦粗糙微通道幂律流体电渗流研究

肖水云 李鸣 杨大勇

肖水云, 李鸣, 杨大勇. PNP模型的正弦粗糙微通道幂律流体电渗流研究[J]. 机械科学与技术, 2017, 36(3): 442-447. doi: 10.13433/j.cnki.1003-8728.2017.0319
引用本文: 肖水云, 李鸣, 杨大勇. PNP模型的正弦粗糙微通道幂律流体电渗流研究[J]. 机械科学与技术, 2017, 36(3): 442-447. doi: 10.13433/j.cnki.1003-8728.2017.0319
Xiao Shuiyun, Li Ming, Yang Dayong. Investigating Effects of Sinusoidal Surface Roughness on Power-law Fluid Electroosmotic Flow in Microchannels using PNP Model[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(3): 442-447. doi: 10.13433/j.cnki.1003-8728.2017.0319
Citation: Xiao Shuiyun, Li Ming, Yang Dayong. Investigating Effects of Sinusoidal Surface Roughness on Power-law Fluid Electroosmotic Flow in Microchannels using PNP Model[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(3): 442-447. doi: 10.13433/j.cnki.1003-8728.2017.0319

PNP模型的正弦粗糙微通道幂律流体电渗流研究

doi: 10.13433/j.cnki.1003-8728.2017.0319
基金项目: 

国家自然科学基金项目(11302095)资助

详细信息
    作者简介:

    肖水云(1991-),硕士,研究方向为流体机械,微流控芯片技术,tinnty@qq.com

    通讯作者:

    李鸣(联系人),教授,博士,liming@ncu.edu.cn

Investigating Effects of Sinusoidal Surface Roughness on Power-law Fluid Electroosmotic Flow in Microchannels using PNP Model

  • 摘要: 针对正弦表面粗糙元对微通道内幂律流体电渗流(EOF)流动特性的影响,建立了二维平板粗糙微通道内幂律流体EOF的Poisson-Nernst-Planck(PNP)数学模型,采用有限元法耦合求解双电层(EDL)电势的Poisson方程、离子输运的Nernst-Planck方程、幂律流体流动的Cauchy动量方程以及本构方程。在对PNP模型验证之后,研究了正弦粗糙元高度、频率对幂律流体壁面EDL电势分布以及EOF流量的影响。模拟结果表明:正弦粗糙元对近壁面EDL电势、外加电场电势、EOF速度矢量分布有较大影响;粗糙元波谷处EDL电势随着粗糙元相对高度或频率的增加而增大,波峰处反之;幂律流体EOF流量随着粗糙元相对高度的增加而单调减小,随粗糙元频率的增加先减小后增大,且在粗糙元频率为2.2时EOF流量最小;特别地,流体幂律指数越小,其受粗糙元高度或频率的影响越大。
  • [1] Edwards IV J M, Hamblin M N, Fuentes H V, et al. Thin film electro-osmotic pumps for biomicrofluidic applications[J]. Biomicrofluidics, 2007,1(1):014101
    [2] Shin S M, Kang I S, Cho Y K. Mixing enhancement by using electrokinetic instability under time-periodic electric field[J]. Journal of Micromechanics and Microengineering, 2005,15(3):455-462
    [3] Fu L M, Lin C H. High-solution DNA separation in microcapillary electrophoresis chips utilizing double-L injection techniques[J]. Electrophoresis, 2004, 25(21-22):3652-3659
    [4] 李战华,吴健康,胡国庆,等.微流控芯片中的流体流动[M].北京:科学出版社,2012 Li Z H, Wu J K, Hu G Q, et al. Fluid flow in microfluidic chips[M]. Beijing:Science Press, 2012(in Chinese)
    [5] Vasu N, De S. Electroosmotic flow of power-law fluids at high zeta potentials[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2010,368(1-3):44-52
    [6] Zhao C L, Yang C. An exact solution for electroosmosis of non-Newtonian fluids in microchannels[J]. Journal of Non-Newtonian Fluid Mechanics, 2011,166(17-18):1076-1079
    [7] Tang G H, Lu Y B, Zhang S X, et al. Experimental investigation of non-Newtonian liquid flow in microchannels[J]. Journal of Non-Newtonian Fluid Mechanics, 2012,173-174:21-29
    [8] Sadeghi A, Saidi M H, Veisi H, et al. Thermally developing electroosmotic flow of power-law fluids in a parallel plate microchannel[J]. International Journal of Thermal Sciences, 2012,61:106-117
    [9] Hu Y D, Xuan X C, Werner C, et al. Electroosmotic flow in microchannels with prismatic elements[J]. Microfluidics and Nanofluidics, 2007,3(2):151-160
    [10] Wang M R, Wang J K, Chen S Y. Roughness and cavitations effects on electro-osmotic flows in rough microchannels using the lattice Poisson-Boltzmann methods[J]. Journal of Computational Physics, 2007,226(1):836-851
    [11] Wang M R, Kang Q J. Electrokinetic transport in microchannels with random roughness[J]. Analytical Chemistry, 2009,81(8):2953-2961
    [12] Chen C K, Cho C C. Electrokinetically-driven flow mixing in microchannels with wavy surface[J]. Journal of Colloid and Interface Science, 2007,312(2):470-480
    [13] Yang D Y, Liu Y. Numerical simulation of electroosmotic flow in microchannels with sinusoidal roughness[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2008,328(1-3):28-33
    [14] Masilamani K, Ganguly S, Feichtinger C, et al. Effects of surface roughness and electrokinetic heterogeneity on electroosmotic flow in microchannel[J]. Fluid Dynamics Research, 2015,47(3):035505
    [15] Cho C C, Chen C L, Chen C K. Electrokinetically-driven non-Newtonian fluid flow in rough microchannel with complex-wavy surface[J]. Journal of Non-Newtonian Fluid Mechanics, 2012,173-174:13-20
    [16] Nejad M M, Javaherdeh K. Numerical simulation of power-law fluids flow and heat transfer in a parallel-plate channel with transverse rectangular cavities[J]. Case Studies in Thermal Engineering, 2014,3:68-78
    [17] Chen S M, He X T, Bertola V, et al. Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson-Boltzmann method[J]. Journal of Colloid and Interface Science, 2014,436:186-193
    [18] Ng C O, Qi C. Electroosmotic flow of a power-law fluid in a non-uniform microchannel[J]. Journal of Non-Newtonian Fluid Mechanics, 2014,208-209:118-125
    [19] Qi C, Ng C O. Electroosmotic flow of a power-law fluid in a slit microchannel with gradually varying channel height and wall potential[J]. European Journal of Mechanics-B/Fluids, 2015,52:160-168
    [20] Wang M R, Kang Q J. Modeling electrokinetic flows in microchannels using coupled lattice Boltzmann methods[J]. Journal of Computational Physics, 2010,229(3):728-744
    [21] Park H M, Lee J S, Kim T W. Comparison of the Nernst-Planck model and the Poisson-Boltzmann model for electroosmotic flows in microchannels[J]. Journal of Colloid and Interface Science, 2007,315(2):731-739
    [22] Kang S M, Suh Y K. Numerical analysis on electroosmotic flows in a microchannel with rectangle-waved surface roughness using the Poisson-Nernst-Planck model[J]. Microfluidics and Nanofluidics, 2009,6(4):461-477
    [23] Yoshida H, Kinjo T, Washizu H. Coupled lattice Boltzmann method for simulating electrokinetic flows:a localized scheme for the Nernst-Plank model[J]. Communications in Nonlinear Science and Numerical Simulation, 2014,19(10):3570-3590
    [24] Wang M R, Chen S Y. On applicability of Poisson-Boltzmann equation for micro-and nanoscale electroosmotic flows[J]. Communications in Computational Physics, 2008,3(5):1087-1099
  • 加载中
计量
  • 文章访问数:  132
  • HTML全文浏览量:  29
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-31
  • 刊出日期:  2017-03-05

目录

    /

    返回文章
    返回