留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小型反馈射流振动器的动态特性研究

吴凛 李艳荣 稲垣照美 湛从昌 陈奎生

吴凛, 李艳荣, 稲垣照美, 湛从昌, 陈奎生. 小型反馈射流振动器的动态特性研究[J]. 机械科学与技术, 2016, 35(12): 1894-1899. doi: 10.13433/j.cnki.1003-8728.2016.1215
引用本文: 吴凛, 李艳荣, 稲垣照美, 湛从昌, 陈奎生. 小型反馈射流振动器的动态特性研究[J]. 机械科学与技术, 2016, 35(12): 1894-1899. doi: 10.13433/j.cnki.1003-8728.2016.1215
Wu Lin, Li Yanrong, Inagaki Terumi, Zhan Congchang, Chen Kuisheng. Research on Dynamic Characteristics of a Small-scale Feedback Fluidic Oscillator[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(12): 1894-1899. doi: 10.13433/j.cnki.1003-8728.2016.1215
Citation: Wu Lin, Li Yanrong, Inagaki Terumi, Zhan Congchang, Chen Kuisheng. Research on Dynamic Characteristics of a Small-scale Feedback Fluidic Oscillator[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(12): 1894-1899. doi: 10.13433/j.cnki.1003-8728.2016.1215

小型反馈射流振动器的动态特性研究

doi: 10.13433/j.cnki.1003-8728.2016.1215
基金项目: 

国家自然科学基金项目(51475338)与湖北省自然科学基金项目(ZRZ2014000117)资助

详细信息
    作者简介:

    吴凛(1990-),博士研究生,研究方向为微尺寸流体机械射流特性,695963614@qq.com

    通讯作者:

    陈奎生(联系人),教授,硕士,kschen@wust.edu.cn

Research on Dynamic Characteristics of a Small-scale Feedback Fluidic Oscillator

  • 摘要: 针对小型反馈射流振动器在低雷诺数下的流场的动态特性,利用粒子图形测速法(PIV)对其进行了二维测量实验,得到了不同流量下内部流场在振动稳定状态时的速度分布,流量范围为100~300 ml/min。通过实验监测上下反馈通道出口处的Y方向分速度并分析射流的振动过程和原理。数据分析方法包括快速傅里叶变换和小波变换,得到不同流量时的振动频率,进而得出振动频率特性和斯特罗哈数特性。结果表明:该小型反馈射流振动器内部流场呈周期振动,快速傅里叶变换和小波变换得到的振动频率接近,频率特性和斯特罗哈数特性均为非线性。
  • [1] Wright P H. The Coanda meter-a fluidic digital gas flowmeter[J]. Journal of Physics E: Scientific Instruments, 1980,13(4):433-436
    [2] Chen C K, Wang L, Yang J T, et al. Experimental and computational analysis of periodic flow structure in oscillatory gas flow meters[J]. Journal of Mechanics, 2006,22(2):137-144
    [3] Boucher R F. Minimum flow optimization of fluidic flowmeters[J]. Measurement Science and Technology, 1995,6(7):872-879
    [4] Cerretelli C, Kirtley K. Boundary layer separation control with fluidic oscillators[J]. Journal of Turbomachinery, 2009,131(4):041001
    [5] 孙厚钧,高军,赵静野.用振荡射流抑制蓝藻滋长防止泥沙淤积[J].水工业市场,2012,(9):57-61 Sun H J, Gao J, Zhao J Y. Eliminating cyanobacteria growth by using oscillating water jets to prevent silt deposit[J]. Water-Industry Market, 2012,(9):57-61 (in Chinese)
    [6] 毛芹,郝鹏飞,何枫,等.射流微振荡器的设计与实验研究[J].实验流体力学,2013,27(1):79-82, 112 Mao Q, Hao P F, He F, et al. Design and experimental study of fluidic micro-oscillator[J]. Journal of Experiments in Fluid Mechanics, 2013,27(1):79-82, 112 (in Chinese)
    [7] 向清江,恽强龙,李红,等.附壁振荡射流元件频率范围的试验[J].江苏大学学报(自然科学版),2012,33(2):160-164 Xiang Q J, Yun Q L, Li H, et al. Experiment of frequency range of wall attaching fluidic oscillator[J]. Journal of Jiangsu University (Natural Science Editions), 2012,33(2):160-164 (in Chinese)
    [8] Lalanne L, Guer Y L, Creff R. Dynamics of a bifurcating flow within an open heated cavity[J]. International Journal of Thermal Sciences, 2001,40(1):1-10
    [9] Gebhard U, Hein H, Just E, et al. Combination of a fluidic micro-oscillator and micro-actuator in LIGA-technique for medical application[C]//Proceedings of the International Conference on Solid State Sensors and Actuators. Chicago: IEEE, 1997
    [10] 方婷,谢代梁,梁国伟.射流流量计的数值仿真研究[J]. 中国计量学院学报,2008,19(2):114-118 Fang T, Xie D L, Liang G W. Numerical simulation studies on fluidic flowmeter[J]. Journal of China Jiliang University, 2008,19(2):114-118 (in Chinese)
    [11] 程宁,谢代梁.微尺度射流流量计的设计与仿真研究[J].传感器与微系统,2011,30(8):70-72,76 Cheng N, Xie D L. Design and Simulation research of microscale fluidic flowmeter[J]. Transducer and Microsystem Technologies, 2011,30(8):70-72,76 (in Chinese)
    [12] Yang J T, Chen C K, Tsai K J, et al. A novel fluidic oscillator incorporating step-shaped attachment walls[J]. Sensors and Actuators A: Physical, 2007,135(2):476-483
    [13] Sun C L, Sun C Y. Effective mixing in a microfluidic oscillator using an impinging jet on a concave surface[J]. Microsystem Technologies, 2011,17(5-7):911-922
    [14] Lee G B, Kuo T Y, Wu W Y. A novel micromachined flow sensor using periodic flapping motion of a planar jet impinging on a V-shaped plate[J]. Experimental Thermal and Fluid Science, 2002,;6(5):435-444
    [15] Hirata K, Matoba N, Naruse T, et al. On the stable-oscillation domain of a simple fluidic oscillator[J]. Journal of Fluid Science and Technology, 2009,4(3):623-635
    [16] Wang H, Priestman G H, Beck S B M, et al. Development of fluidic flowmeters for monitoring crude oil production[J]. Flow Measurement and Instrumentation, 1996,7(2):91-98
    [17] Ramírez J I, Tonner F, Bindel A. Fluidic oscillations as energy source for flow sensors[J]. Proceedings of the PowerMEMS, 2008:9-12
    [18] 谢代梁,邢玉雷,梁国伟.大量程比射流流量计的仿真研究[J].传感技术学报,2007,20(7):1655-1658 Xie D L, Xing Y L, Liang G W. Numerical simulations of large scale fluidic flowmeter[J]. Chinese Journal of Sensors and Actuators, 2007,20(7):1655-1658 (in Chinese)
  • 加载中
计量
  • 文章访问数:  125
  • HTML全文浏览量:  19
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-17
  • 刊出日期:  2017-01-05

目录

    /

    返回文章
    返回