留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

718镍合金切削过程微结构变化有限元仿真

王保卫 孙军龙

王保卫, 孙军龙. 718镍合金切削过程微结构变化有限元仿真[J]. 机械科学与技术, 2016, 35(10): 1597-1602. doi: 10.13433/j.cnki.1003-8728.2016.1020
引用本文: 王保卫, 孙军龙. 718镍合金切削过程微结构变化有限元仿真[J]. 机械科学与技术, 2016, 35(10): 1597-1602. doi: 10.13433/j.cnki.1003-8728.2016.1020
Wang Baowei, Sun Junlong. Finite Element Simulations of Microstructure Change in Cutting Process of Inconel 718[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(10): 1597-1602. doi: 10.13433/j.cnki.1003-8728.2016.1020
Citation: Wang Baowei, Sun Junlong. Finite Element Simulations of Microstructure Change in Cutting Process of Inconel 718[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(10): 1597-1602. doi: 10.13433/j.cnki.1003-8728.2016.1020

718镍合金切削过程微结构变化有限元仿真

doi: 10.13433/j.cnki.1003-8728.2016.1020
基金项目: 

国家自然科学基金项目(51505208)资助

详细信息
    作者简介:

    王保卫(1969-),讲师,硕士,研究方向为机械设计,数控加工与编程,wangbaowei080@sina.com

Finite Element Simulations of Microstructure Change in Cutting Process of Inconel 718

  • 摘要: 为对718镍合金切削过程加工表面晶粒细化和微硬度变化较为准确的仿真预测,首先将仿真与实验对比,选取一组最佳的本构模型参数,其次通过有限元校准法对仿真过程的相应物理参数进行优化,使得仿真的相关参数达到最优,并通过对Deform-2D进行二次开发,运用Zener-Hollomon方程对718镍合金正交切削过程中动态再结晶过程仿真,运用Hall-Petch方程对加工表面和次表面微硬度变化仿真,最终得到了718镍合金正交切削过程加工表面晶粒尺寸和微硬度的变化,为718镍合金表面加工质量的评估提供了较为可靠的依据。
  • [1] Ezugwu E O. Key improvements in the machining of difficult-to-cut aerospace superalloys[J]. International Journal of Machine Tools and Manufacture, 2005,45(12-13):1353-1367
    [2] Jafarian F, Amirabadi H, Fattahi M. Improving surface integrity in finish machining of Inconel 718 alloy using intelligent systems[J]. The International Journal of Advanced Manufacturing Technology, 2014,71(5-8):817-827
    [3] Meng L H, He N, Yang Y F, et al. Measurement of surface residual stresses generated by turning thin-wall Ti6Al4V tubes using different cutting parameters[J]. Rare Metal Materials and Engineering, 2015,44(10):2381-2386
    [4] Meng L H, He N, Yang Y F, et al. Method for measuring residual stresses induced by boring in internal surface of tube and its validation with XRD method[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2014,31(5):508-514
    [5] Rotella G, Dillon O W, Umbrello D, et al. Finite element modeling of microstructural changes in turning of AA7075-T651 alloy[J]. Journal of Manufacturing Processes, 2013,15(1):87-95
    [6] Meng L H. Finite element simulation of high speed machining of Ti6Al4V alloy and the corresponding experimental study[C]//Materials Science Forum. Nanjing:Trans Tech Publications, 2016,836-837:444-451
    [7] Ahmed N, Mitrofanov A V, Babitsky V I, et al. Analysis of material response to ultrasonic vibration loading in turning Inconel 718[J]. Materials Science and Engineering:A, 2006,424(1-2):318-325
    [8] Courbon C, Kramar D, Krajnik P, et al. Investigation of machining performance in high-pressure jet assisted turning of Inconel 718:an experimental study[J]. International Journal of Machine Tools and Manufacture, 2009,49(14):1114-1125
    [9] Özel T, Ulutan D. Prediction of machining induced residual stresses in turning of titanium and nickel based alloys with experiments and finite element simulations[J]. CIRP Annals-Manufacturing Technology, 2012,61(1):547-550
    [10] DeMange J J, Prakash V, Pereira J M. Effects of material microstructure on blunt projectile penetration of a nickel-based super alloy[J]. International Journal of Impact Engineering, 2009,36(8):1027-1043
    [11] Wang X Y, Huang C Z, Zou B, et al. Dynamic behavior and a modified Johnson-Cook constitutive model of Inconel 718 at high strain rate and elevated temperature[J]. Materials Science and Engineering:A, 2013,580:385-390
    [12] Klocke F, Lung D, Buchkremer S. Inverse identification of the constitutive equation of Inconel 718 and AISI 1045 from FE machining simulations[J]. Procedia CIRP, 2013,8:212-217
    [13] Lorentzon J, Järvstra。t N, Josefson B L. Modelling chip formation of alloy 718[J]. Journal of Materials Processing Technology, 2009,209(10):4645-4653
    [14] Ozel T, Llanos I, Soriano J, et al. 3D finite element modelling of chip formation process for machining Inconel 718:comparison of FE software predictions[J]. Machining Science and Technology, 2011,15(1):21-46
    [15] Malakizadi A, Cedergren S, Surreddi K B, et al. A methodology to evaluate the machinability of Alloy 718 by means of FE simulation[C]//International Conference on Advanced Manufacturing Engineering and Technologies. Stockholm:NEWTECH, 2013:95-106
    [16] Del Prete A, Filice L, Umbrello D. Numerical simulation of machining nickel-based alloys[J]. Procedia CIRP, 2013,8:540-545
    [17] Yanagimoto J, Karhausen K, Brand A J, et al. Incremental formulation for the prediction of flow stress and microstructural change in hot forming[J]. Journal of Manufacturing Science and Engineering, 1998,120(2):316-322
    [18] Hughes G D, Smith S D, Pande C S, et al. Hall-Petch strengthening for the microhardness of twelve nanometer grain diameter electrodeposited nickel[J]. Scripta Metallurgica, 1986,20(1):93-97
    [19] Sui F L, Zuo Y, Liu X H, et al. Microstructure analysis on IN 718 alloy round rod by FEM in the hot continuous rolling process[J]. Applied Mathematical Modelling, 2013,37(20-21):8776-8784
    [20] Umbrello D. Investigation of surface integrity in dry machining of Inconel 718[J]. The International Journal of Advanced Manufacturing Technology, 2013,69(9-12):2183-2190
  • 加载中
计量
  • 文章访问数:  140
  • HTML全文浏览量:  28
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-01
  • 刊出日期:  2016-10-05

目录

    /

    返回文章
    返回