留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大型液压机驱动系统摩擦补偿控制

潘晴 黄明辉 李毅波

潘晴, 黄明辉, 李毅波. 大型液压机驱动系统摩擦补偿控制[J]. 机械科学与技术, 2015, 34(2): 204-208. doi: 10.13433/j.cnki.1003-8728.2015.0209
引用本文: 潘晴, 黄明辉, 李毅波. 大型液压机驱动系统摩擦补偿控制[J]. 机械科学与技术, 2015, 34(2): 204-208. doi: 10.13433/j.cnki.1003-8728.2015.0209
Pan Qing, Huang Minghui, Li Yibo. The Friction Compensation for Giant Hydraulic Press[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(2): 204-208. doi: 10.13433/j.cnki.1003-8728.2015.0209
Citation: Pan Qing, Huang Minghui, Li Yibo. The Friction Compensation for Giant Hydraulic Press[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(2): 204-208. doi: 10.13433/j.cnki.1003-8728.2015.0209

大型液压机驱动系统摩擦补偿控制

doi: 10.13433/j.cnki.1003-8728.2015.0209
基金项目: 

国家自然科学基金项目(51005251)、国家重点基础研究发展计划(973计划)项目(2011CB706802)、金属挤压/锻造装备技术国家重点实验室开放基金项目及湖南省博士生科研创新项目资助

详细信息
    作者简介:

    潘晴(1988-),博士研究生,研究方向为塑性装备及工艺、机电液控制理论与应用,panqing0905@csu.edu.cn

    通讯作者:

    黄明辉,教授,博士生导师,meeh@csu.edu.cn

The Friction Compensation for Giant Hydraulic Press

  • 摘要: 为提高大型液压机驱动系统控制精度,提出了基于改进型LuGre摩擦模型的补偿控制方法。建立了液压机驱动系统的动力学模型,通过改进型LuGre模型来描述液压机的综合摩擦特性。分别设计了PID控制器、2自由度PID控制器以及模糊自适应控制器,通过仿真实验验证了补偿方案的有效性,并对比分析了3种补偿控制方案的效果。仿真结果表明:采用模糊自适应补偿控制方案效果最优,2自由度PID补偿控制方案次之,常规PID补偿效果最差。当以正弦运动作为驱动系统的输入信号时,采用模糊控制补偿方案的速度跟踪均方误差(Mean Square Error, MSE)能从PID补偿方案的5.771×10-3减小至5.903×10-4。采用模糊自适应补偿方案能有效地抑制摩擦对液压机驱动系统低速性能的不利影响,可显著提高其动态跟踪性能。
  • [1] 黄明辉,李毅波,张猛,等.模锻压机超低速运行动态性能分析[J].中南大学学报,2012,43(11):4259-4267 Huang M H, Li Y B, Zhang M, et al. Dynamic performance analysis for die-forging press machine under extremely low speed[J]. Journal of Central South University,2012,43(11):4259-4267 (in Chinese )
    [2] Chen M, Huang M H, Zhou Y C, et al. Synchronism control system of heavy hydraulic press [C]// International Conference on Measuring Technology and Mechatronics Automation,April 11-12, 2009,Zhangjiajie,Hunan
    [3] Iwasaki M, Shibata T, Matsui N. Disturbance-observer-based nonlinear friction compensation in table drive system [J]. IEEE/ASME Transactions on Mechatronics,1999,4(1):3-8
    [4] Chen W H. Disturbance observer based control for nonlinear systems[J]. IEEE/ASME Transactions on Mechatronics,2004,9(4):706-710
    [5] Ke J, Su B K, Zeng M. Robust adaptive friction compensation for DC motors with parametric uncertainties[J]. Proceedings of the CSEE,2007,23(7):117-122
    [6] 吴盛林,刘春芳.超低速高精度转台中摩擦力矩的动态补偿[J].南京理工大学学报,2002,26(4):393-369 Wu S L, Liu C F. Friction dynamic compensation for a simulator with ultra-low speed and high presicion[J]. Journal of Nanjing University of Science and Technology,2002,26(4):393-369 (in Chinese)
    [7] 于伟,马佳光,李锦英,等.基于LuGre模型实现精密伺服转台摩擦参数辨识及补偿[J].光学精密工程,2011,19(11):2736-2743 Yu W, Ma J G, Li J Y, et al. Friction parameter identification and friction compensation for precision servo turning table[J]. Guangxue Jingmi Gongcheng/Optics and Precision Engineering,2011,19(11):2736-2743 (in Chinese)
    [8] 苗中华,王旭永,刘成良,等.基于滑模变结构控制的液压伺服系统超低速轨迹跟踪[J].上海交通大学学报,2008,42(7):1182-1186 Miao Z H, Wang X Y, Liu C L, et al. The trajectory tracking of hydraulic servo system via sliding mode variable structure control in very low velocity[J]. Journal of Shanghai Jiaotong University,2008,42(7):1182-1186 (in Chinese)
    [9] Khayati K, Bigras P, Dessaint L A. LuGre model-based friction compensation and positioning control for a pneumatic actuator using multi-objective output-feedback control via LMI optimization[J]. Mechatronics,2009,19(4):535-547
    [10] 张文静,台宪青.基于LuGre模型的火炮伺服系统摩擦力矩自适应补偿[J].清华大学学报,2007,47(S2):1756-1760 Zhang W J, Tai X Q. Adaptive friction compensation in gun servo systems based on the LuGre model[J]. Journal of Tsinghua University,2007,47(Suppl 2):1756-1760 (in Chinese)
    [11] Zheng H R, Nariman S. Tracking control of hydraulic actuators using a LuGre friction model compensation[J]. Journal of Dynamic Systems, Measurement, and Control,2008,130(1):1-7
    [12] 姚建勇,焦宗夏.改进型LuGre模型的负载模拟器摩擦补偿[J].北京航空航天大学学报,2010,36(7):812-820 Yao J Y, Jiao Z X. Friction compensation for hydraulic load simulator based on improved LuGre friction model[J]. Journal of Beijing University of Aeronautics and Astronautics,2010,36(7):812-820 (in Chinese)
    [13] 向红标,谭文斌,李醒飞,等.基于LuGre模型的自适应摩擦补偿[J].机械工程学报,2012,48(17):70-74 Xiang H B, Tan W B, Li X F, et al. Adaptive Friction Compensation Based on LuGre Model[J]. Journal of Mechanical Engineering,2012,48(17):70-74 (in Chinese)
    [14] 刘强,尔联洁,刘金琨.摩擦非线性环节的特性、建模与控制补偿综述[J].系统工程与电子技术,2002,24(11):45-52 Liu Q, Er L J, Liu J K. Overiew of characteristics, modeling and compensation of nonlinear friction in servo systems[J]. Systems Engineering and Electronics,2002,24(11):45-52 (in Chinese)
    [15] Canudas C, Olsson H, Astrom K J, et al. A new model for control of systems with friction[J]. IEEE Transactions on Automatic Control,1995,40(3):419-425
    [16] Pan Q, Huang M H, Li Y B. Modeling and identification of friction behaviors of hydraulic forging press machine[J]. Applied Mechanics and Materials,2013,3(28):77-83
    [17] 李洪人.液压控制系统[M].北京:国防工业出版社,1991 Li H R. Hydraulic control system[M]. Beijing:National Defence Industry Press,1991 (in Chinese)
    [18] 吴振顺.液压控制系统[M].北京:高等教育出版社,2007 Wu Z S. Hydraulic control system[M]. Beijing:Higher Education Press,2007 (in Chinese)
    [19] Araki M, Taguchi H. Two-degree-of-freedom PID controllers[J]. International Journal of Control, Automation and Systems,2003,1(4):401-411
    [20] 刘金琨.先进PID控制Matlab仿真[M].北京:电子工业出版社,2004 Liu J K. Matlab simulation of advanced PID control[M]. Beijing:Electronic Industry Press,2004 (in Chinese)
    [21] Xu J X, Hang C C, Liu C. Parallel structure and tuning of a fuzzy PID controller[J]. Automatica,2000,36(5):673-684
  • 加载中
计量
  • 文章访问数:  114
  • HTML全文浏览量:  15
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-26
  • 刊出日期:  2015-02-05

目录

    /

    返回文章
    返回