留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纵扭超声磨削ZrO2陶瓷表面形貌及粗糙度特征研究

马文举 薛进学 隆志力 杨宇辉 赵恒 胡广豪

马文举, 薛进学, 隆志力, 杨宇辉, 赵恒, 胡广豪. 纵扭超声磨削ZrO2陶瓷表面形貌及粗糙度特征研究[J]. 机械科学与技术, 2021, 40(7): 1058-1064.
引用本文: 马文举, 薛进学, 隆志力, 杨宇辉, 赵恒, 胡广豪. 纵扭超声磨削ZrO2陶瓷表面形貌及粗糙度特征研究[J]. 机械科学与技术, 2021, 40(7): 1058-1064.
MA Wenju, XUE Jinxue, LONG Zhili, YANG Yuhui, ZHAO Heng, HU Guanghao. Study on Surface Morphology and Roughness Characteristics of ZrO2 Ceramics Longitudinal Torsional Ultrasonic Grinding[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(7): 1058-1064.
Citation: MA Wenju, XUE Jinxue, LONG Zhili, YANG Yuhui, ZHAO Heng, HU Guanghao. Study on Surface Morphology and Roughness Characteristics of ZrO2 Ceramics Longitudinal Torsional Ultrasonic Grinding[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(7): 1058-1064.

纵扭超声磨削ZrO2陶瓷表面形貌及粗糙度特征研究

基金项目: 

国家自然科学基金项目 U1713206

深圳市学科布局基础研究项目 JCYJ20170413112645981

深圳市学科布局基础研究项目 JCYJ20150928162432701

详细信息
    作者简介:

    马文举(1992-), 硕士研究生, 研究方向为超声辅助精密加工, mawenju126@foxmail.com

    通讯作者:

    薛进学, 副教授, 硕士生导师, xjx19652000@163.com

  • 中图分类号: TG506.5;TG580.6

Study on Surface Morphology and Roughness Characteristics of ZrO2 Ceramics Longitudinal Torsional Ultrasonic Grinding

  • 摘要: ZrO2陶瓷作为典型硬脆材料, 采用普通的磨削方法难以获得良好表面质量, 而超声振动磨削可显著改善其加工效果。本文将纵扭超声振动应用于磨削加工, 运用单因素法, 设计普通磨削(OG)及纵扭超声磨削(LTUG)对比试验, 以加工后材料表面粗糙度Ra值和微观形貌作为评价指标, 分析并得到各工艺参数对表面质量的影响规律。结果表明: 整体上LTUG表面Ra值始终低于OG, 且磨削表面平整, 磨痕形貌更加均匀、顺畅; 相比于OG, 随超声能量增大, LTUG表面Ra值呈先减小后增大趋势, 同时均随磨削深度加深先减小后增大, 随主轴转速提高均逐渐降低; 另外, OG表面Ra值随进给速度提升先增大后减小, 而LTUG为持续增大并逐渐趋向OG。
  • 图  1  磨削试验设备及原理图

    图  2  LTUG加工示意图

    图  3  QRa值的影响

    图  4  不同Q参数磨削表面形貌

    图  5  Q为60%时磨削表面形貌

    图  6  apRa值的影响

    图  7  脆塑性组合去除表面形貌

    图  8  较大ap时表面形貌(ap=14 μm)

    图  9  nRa值的影响

    图  10  不同n参数的磨削表面形貌

    图  11  VfRa值的影响

    图  12  不同Vf参数的磨削表面形貌

    表  1  ZrO2陶瓷主要力学性能参数

    参数名称 数值
    密度ρ/(g·cm-3) >5.5
    硬度HV/GPa 11.5
    弯曲强度σ/MPa 120 0
    断裂韧性KIC/(MPa·m1/2) 9.0
    弹性模量E/GPa >200
    泊松比υ 0.22~0.23
    下载: 导出CSV

    表  2  加工工艺条件

    试验参数 设置条件
    磨削方式 平面单向直线磨削(空转回刀)
    超声振动方向 轴向方向(纵振)绕主轴旋转方向(扭振)
    超声振动条件 超声频率范围20~30 kHz, 振幅0~10 μm可调
    纵扭转换比 约为25%
    下载: 导出CSV

    表  3  单因素工艺试验参数

    试验组数 Q/% ap/μm n/(r·min-1) Vf /(mm·min-1)
    1 60 10 16 000, 18 000, 20 000, 22 000, 24 000 100
    2 60 6, 8, 10, 12, 14 20 000 100
    3 60 10 20 000 60, 80, 100, 120, 140
    4 0, 20, 30, 40, 50, 60, 70, 80 10 20 000 100
    下载: 导出CSV
  • [1] 冯平法, 王健健, 张建富, 等. 硬脆材料旋转超声加工技术的研究现状及展望[J]. 机械工程学报, 2017, 53(19): 3-21 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201719002.htm

    FENG P F, WANG J J, ZHANG J F, et al. Research status and future prospects of rotary ultrasonic machining of hard and brittle materials[J]. Journal of Mechanical Engineering, 2017, 53(19): 3-21 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201719002.htm
    [2] THOE T B, ASPINWALL D K, WISE M L H. Review on ultrasonic machining[J]. International Journal of Machine Tools and Manufacture, 1998, 38(4): 239-255 doi: 10.1016/S0890-6955(97)00036-9
    [3] ZHANG C L, ZHANG J F, FENG P F. Mathematical model for cutting force in rotary ultrasonic face milling of brittle materials[J]. The International Journal of Advanced Manufacturing Technology, 2013, 69(1-4): 161-170 doi: 10.1007/s00170-013-5004-z
    [4] 房善想, 赵慧玲, 张勤俭. 超声加工技术的应用现状及其发展趋势[J]. 机械工程学报, 2017, 53(19): 22-32 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201719003.htm

    FANG S X, ZHAO H L, ZHANG Q J. The application status and development trends of ultrasonic machining technology[J]. Journal of Mechanical Engineering, 2017, 53(19): 22-32 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201719003.htm
    [5] 张建华, 田富强, 张明路, 等. 微磨削与超声振动复合加工技术研究现状与展望[J]. 振动与冲击, 2016, 35(8): 97-109 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201608016.htm

    ZHANG J H, TIAN F Q, ZHANG M L, et al. Review of studies on micro-grinding and ultrasonic-assisted machining[J]. Journal of Vibration and Shock, 2016, 35(8): 97-109 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201608016.htm
    [6] XIAO X Z, ZHENG K, LIAO W H, et al. Study on cutting force model in ultrasonic vibration assisted side grinding of zirconia ceramics[J]. International Journal of Machine Tools and Manufacture, 2016, 104: 58-67 doi: 10.1016/j.ijmachtools.2016.01.004
    [7] MENG H, ZHENG K, XIAO X Z, et al. Investigation on feed direction cutting force in ultrasonic vibration-assisted grinding of dental ceramics[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, 231(19): 3493-3503 doi: 10.1177/0954406216650915
    [8] ZHENG K, LIAO W H, SUN L J, et al. Investigation on grinding temperature in ultrasonic vibration-assisted grinding of zirconia ceramics[J]. Machining Science and Technology: An International Journal, 2019, 23(4): 612-628 doi: 10.1080/10910344.2019.1575405
    [9] YANG Z C, ZHU L D, LIN B, et al. The grinding force modeling and experimental study of ZrO2ceramic materials in ultrasonic vibration assisted grinding[J]. Ceramics International, 2019, 45(7): 8873-8889 doi: 10.1016/j.ceramint.2019.01.216
    [10] YANG Z C, ZHU L D, NI C B, et al. Investigation of surface topography formation mechanism based on abrasive-workpiece contact rate model in tangential ultrasonic vibration-assisted CBN grinding of ZrO2 ceramics[J]. International Journal of Mechanical Sciences, 2019, 155: 66-82 doi: 10.1016/j.ijmecsci.2019.02.031
    [11] LI Z H, ZHENG K, LIAO W H, et al. Surface characteriza-tion of zirconia ceramics in ultrasonic vibration-assisted grinding[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(8): 379 doi: 10.1007/s40430-018-1296-0
    [12] 肖行志, 郑侃, 廖文和. 超声振动辅助磨削牙科氧化锆陶瓷切削力预测模型研究[J]. 振动与冲击, 2015, 34(12): 140-145 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201512024.htm

    XIAO X Z, ZHENG K, LIAO W H. Prediction model of cutting force in ultrasonic vibration assisted grinding of zirconia ceramics[J]. Journal of Vibration and Shock, 2015, 34(12): 140-145 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201512024.htm
    [13] ALKAWAZ M H, HAFIZ M S A, MASIM M S, et al. Study of dental zirconia milling using rotary ultrasonic machining[J]. International Journal of Engineering & Technology, 2018, 7(4-16): 181-183 http://www.researchgate.net/publication/333894105_Study_of_Dental_Zirconia_Milling_Using_Rotary_Ultrasonic_Machining
    [14] BHOSALE S B, PAWADE R S, BRAHMANKAR P K. Effect of process parameters on MRR, TWR and surface topography in ultrasonic machining of alumina-zirconia ceramic composite[J]. Ceramics International, 2014, 40(8): 12831-12836 doi: 10.1016/j.ceramint.2014.04.137
    [15] 荆君涛. 陶瓷基复合材料零部件的复杂曲面加工技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2009

    JING J T. Study on the complex curved surface machining technology of ceramic matrix composite parts[D]. Harbin: Harbin Engineering University, 2009 (in Chinese)
    [16] 孔令志. 纳米陶瓷超声振动磨削表面/亚表面损伤机理研究[D]. 焦作: 河南理工大学, 2010

    KONG L Z. Study on surface/subsurface damage mechanism in the ultrasonic vibration assisted grinding of nanocomposite ceramics[D]. Jiaozuo: Henan Polytechnic University, 2010 (in Chinese)
    [17] 曹建国, 张勤俭. 碳化硅陶瓷超声振动辅助磨削材料去除特性研究[J]. 机械工程学报, 2019, 55(13): 205-211 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201913022.htm

    CAO J G, ZHANG Q J. Material removal behavior in ultrasonic assisted grinding of SiC ceramics[J]. Journal of Mechanical Engineering, 2019, 55(13): 205-211 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201913022.htm
    [18] 周雪钢. 氮化硅陶瓷超声振动磨削机理及表面质量研究[D]. 哈尔滨: 哈尔滨工业大学, 2011

    ZHOU X G. Study on machining mechanism and surface quality in ultrasonic vibration grinding of silicon nitride ceramics[D]. Harbin: Harbin Institute of Technology, 2011 (in Chinese)
    [19] 马文举, 薛进学, 杨宇辉, 等. 氧化锆陶瓷纵扭超声磨削运动特性与试验分析[J]. 机械科学与技术, 2020, 39(10): 1580-1586 doi: 10.13433/j.cnki.1003-8728.20190306

    MA W J, XUE J X, YANG Y H, et al. Kinematics characteristics and experimental analysis of longitudinal torsional ultrasonic grinding for zirconia ceramics[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1580-1586 (in Chinese) doi: 10.13433/j.cnki.1003-8728.20190306
    [20] 张能. 纵扭复合振动超声磨削加工工程氧化锆陶瓷机理及工艺研究[D]. 广州: 广东工业大学, 2018

    ZHANG N. Study on mechanism and technology of zirconia ceramics with longitudinal-torsional conposite vibration ultrasonic grinding machining[D]. Guangzhou: Guangdong University of Technology, 2018 (in Chinese)
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  104
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-03
  • 刊出日期:  2021-07-01

目录

    /

    返回文章
    返回