留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于RSM的SiC单晶片切割过程多目标优化

李淑娟 万波 胡超

李淑娟, 万波, 胡超. 基于RSM的SiC单晶片切割过程多目标优化[J]. 机械科学与技术, 2014, 33(3): 452-459.
引用本文: 李淑娟, 万波, 胡超. 基于RSM的SiC单晶片切割过程多目标优化[J]. 机械科学与技术, 2014, 33(3): 452-459.
Li Shujuan, Wan Bo, Hu Chao. Multiple Objective Optimization for SiC Single Crystal Wafers Cutting Process Based on Response Surface Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(3): 452-459.
Citation: Li Shujuan, Wan Bo, Hu Chao. Multiple Objective Optimization for SiC Single Crystal Wafers Cutting Process Based on Response Surface Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(3): 452-459.

基于RSM的SiC单晶片切割过程多目标优化

基金项目: 

国家自然科学基金项目(51175420)

陕西省科技攻关项目(2010K09-01)

陕西省教育厅基金项目(11JK0849/11JS074)资助

详细信息
    作者简介:

    李淑娟(1968-),教授,博士生导师,研究方向为硬脆材料的加工过程控制和优化,shujuanli@xaut.edu.cn

Multiple Objective Optimization for SiC Single Crystal Wafers Cutting Process Based on Response Surface Method

  • 摘要: SiC单晶体是一种高硬度、高脆性的难加工材料,其切割过程中的工艺参数对切割表面质量、锯切力以及线锯使用寿命有重要的影响。以线锯速度、工件进给速度和工件转速为设计因子进行三因子三水平的中心复合试验设计,采用响应曲面法对试验结果进行分析,分别建立表面粗糙度、锯切力和线锯寿命的响应面模型,获得了三个单目标优化的切割工艺参数。同时根据响应面模型,建立了表面粗糙度、锯切力和线锯寿命同时达到均衡优化的模型,根据满意度函数方法,得到最佳的切割工艺参数。多目标优化结果表明:当SiC切片表面粗糙度的预测值为0.6951μm,锯切力预测值为2.66515N,线锯寿命预测值为519.87min时,获得了最佳的切割工艺参数。
  • [1] Neudeck P G. Progress in silicon carbide semiconductor electronics technology[J]. Journal of Electronic Materials,1995,(24): 283-288
    [2] 王利杰, 冯玢, 洪颖等. 3 英寸半绝缘 4H-SiC 单晶的研制[J]. 半导体材料,2011,36(1): 8-10 Wang Lijie, Feng Fen, Hong Y, et al. Bulk growth of the semi-insulating 3-inch 4H-SiC [J]. Semiconductor Technology,2011,36(1): 8-10 (in Chinese) Ohata T, Nakamura Y, Nakamachi E. Development of optimum process design system for sheet fabrication using response surface method[J]. Journal of Materials Processing Technology,2003,144(1): 667-672[4] Douglas C. Montgomery, design and analysisi of experiments[M]. Posts and Telecom Press,2009
    [3] Bidiville A, Neulist I, Wasmer K, et al. Effect of debris on the silicon wafering for solar cells[J]. Solar Energy Materials and Solar Cells,2011,95(8): 2490-2496
    [4] Funke C, Wolf S, Stoyan D. Modeling the tensile strength and crack length of wire-sawn silicon wafers [J]. Journal of Solar Energy Engineering, 2009, 131 (1): 11-12
    [5] Li W C, Tsai D M. Automatic saw-mark detection in multicrystalline solar wafer images[J]. Solar Energy Materials and Solar Cells,2011,95(8): 2206-2220
    [6] Liedke T, Kuna M. A macroscopic mechanical model of the wire sawing process[J]. International Journal of Machine Tools and Manufacture,2011,51(9): 711-720
    [7] Yu X, Wang P, Li X, et al. Thin czochralski silicon solar cells based on diamond wire sawing technology [J]. Solar Energy Materials and Solar Cells,2012,98: 337-342
    [8] Wu H, Melkote S N. Study of ductile-to-brittle transition in single grit diamond scribing of silicon: application to wire sawing of silicon wafers[J]. Journal of Engineering Materials and Technology, 2012, 134 (4): 041011
    [9] Lee S H. Analysis of ductile mode and brittle transition of AFM nanomachining of silicon [J]. International Journal of Machine Tools and Manufacture,2012,61: 71- 79
    [10] Cvetkovic ' S, Morsbach C, Rissing L. Ultra-precision dicing and wire sawing of silicon carbide (SiC) [J]. Microelectronic Engineering,2011,88(8): 2500-2504
    [11] Patten J, Gao W, Yasuto K. Ductile regime nanomachining of single-crystal silicon carbide[J]. Journal of Manufacturing Science and Engineering, 2005, 127 (3): 522
    [12] Hardin C W, Qu J, Shih A J. Fixed abrasive diamond wire saw slicing of single-crystal silicon carbide wafers[J]. Materials and Manufacturing Processes,2004,19(2): 355-367
    [13] Godfrey O U, Kumar S. Response surface methodologybased approach to CNC drilling operations[J]. Journal of Materials Processing Technology,2006,171: 41-47 VGiovanni M. Response surface methodology and product optimization[J]. Food Technology, 1983, 37 (11): 41-45
    [14] Palanikumar K, Muthukrishnan N, Hariprasad K S. Surface roughness parameters optimization in machining A356 /SiC /20p metal matrix composites by PCD tool using response surface methodology and desirability function[J]. Machining Science and Technology,2008,12: 529-545
    [15] 梁永收, 史耀耀,任军学,等.基于响应曲面法的GH4169 铣削力预测模型研究[J]. 机械科学与技术, 2010,29(11): 1547-1552 Liang Y S,Shi Y Y, Ren J X, et al. Prediction model of GH4169 milling force by response surface methodology[J]. Mechanical Science and Technology, 2010, 29 (11): 1547-1552 (in Chinese)
    [16] 贺连芳,赵国群,李辉平, 等. 基于响应曲面方法的热冲压硼钢 B1500HS 淬火工艺参数优化木[J]. 机械工程学报,2011,47(8): 77-82 He L F, Zhao G Q, Li H P, et al. Optimization of quenching parameters for hot stamping boron steel B1500HS based on response surface methodology[J]. Journal of Mechanical Engineering, 2011, 47 (8): 77-82 (in Chinese)
    [17] 袁人炜,陈明,曲征洪, 等. 响应曲面法预测铣削力模型及影响因素的分析[J]. 上海交通大学学报,2001, 35 (7): 1040-1045 Yuan R W, Chen M, Qu Z H, et al. Milling force prediction and analysis using statistics method[J]. Journal of Shanghai Jiaotong University, 2001, 35 (7): 1040- 1045 (in Chinese)
  • 加载中
计量
  • 文章访问数:  133
  • HTML全文浏览量:  17
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-03
  • 刊出日期:  2015-06-10

目录

    /

    返回文章
    返回