论文:2024,Vol:42,Issue(3):498-505
引用本文:
卢威, 张宁莉, 王帅, 丰茂龙, 范含林. 光学舱推进剂补加过程的热分析仿真与试验研究[J]. 西北工业大学学报
LU Wei, ZHANG Ningli, WANG Shuai, FENG Maolong, FAN Hanlin. Study on thermal analysis simulation and test of propellant refueling process for optical module[J]. Journal of Northwestern Polytechnical University

光学舱推进剂补加过程的热分析仿真与试验研究
卢威1,2, 张宁莉1,2, 王帅1,2, 丰茂龙1,2, 范含林1
1. 北京空间飞行器总体设计部, 北京 100094;
2. 航天器热控全国重点实验室, 北京 100094
摘要:
推进剂补加是确保光学舱在轨长寿命工作的重要功能,补加过程面临的热环境条件比以往任务恶劣,全过程热控制十分必要。针对光学舱推进剂补加过程的复杂传热新问题,建立包含压气机、液冷模块和环路热管等部件的光学舱平台集成热数学模型,进行热分析仿真研究,并开展系统级热试验。对比高温和低温2种补加条件的瞬态热分析和热试验结果,研究传热关系和温度变化规律;针对热试验中垂直热管因重力因素从不运行至运行的瞬态过程,提出一种变热导率仿真方法;提出高温补加优化设计方案并进行在轨预示。结果表明:瞬态仿真结果与试验结果吻合良好,验证了热分析方法和仿真模型的准确性和有效性;在轨补加采用压气机本体预热并启动2套环路热管,压气机的最高温度≤34.1℃,预热总功耗50 Wh,满足指标要求。研究结果对于光学舱停靠空间站期间的推进剂补加流程设计具有一定参考价值。
关键词:    光学舱    推进剂补加    热控制    热分析    压气机    液冷模块    环路热管   
Study on thermal analysis simulation and test of propellant refueling process for optical module
LU Wei1,2, ZHANG Ningli1,2, WANG Shuai1,2, FENG Maolong1,2, FAN Hanlin1
1. Beijing Institute of Spacecraft System Engineering, Beijing 100094, China;
2. National Key Laboratory of Spacecraft Thermal Control, Beijing 100094, China
Abstract:
Propellant refueling is important for long-term operation of the optical module in orbit. However, its thermal environment is harsher than on previous missions. Therefore, thermal control of the entire process is required. In order to solve the complex heat transfer of propellant refueling process, an integrated thermal model is established, which includes all the equipment such as the compressor, liquid cooler and loop heat pipe. The thermal analysis simulation and system-level thermal tests is presented. Firstly, the heat transfer relationship and temperature variation are analyzed by comparing the results of transient thermal analysis and thermal test in high and low temperature conditions. Then, a variable thermal conductivity simulation method is studied for the transient process from inoperative to operative of the vertical heat pipe due to gravitational factors in the thermal test. Finally, an optimized design scheme for high temperature refueling is proposed and pre-demonstrated in orbit. The results indicate that the transient simulation results are in a good agreement with the test results under the high and low temperatures, which verifies the accuracy and validity of the analysis method and simulation model. When preheating the compressor and starting two sets of loop heat pipes during on-orbit refueling, the maximum temperature of compressor is below 34.1℃, and the total power consumption of preheating is 50 Wh, which meet the design requirement. The investigation provides an important reference for designing the propellant refueling process in the docking of the optical module to the China Space Station(CSS).
Key words:    optical module    propellant refueling    thermal control    thermal analysis    compressor    liquid cooler    loop heat pipe   
收稿日期: 2023-06-13     修回日期:
DOI: 10.1051/jnwpu/20244230498
通讯作者: 卢威(1981—) e-mail:luwei_cast@163.com     Email:luwei_cast@163.com
作者简介: 卢威(1981—),高级工程师
相关功能
PDF(3148KB) Free
打印本文
把本文推荐给朋友
作者相关文章
卢威  在本刊中的所有文章
张宁莉  在本刊中的所有文章
王帅  在本刊中的所有文章
丰茂龙  在本刊中的所有文章
范含林  在本刊中的所有文章

参考文献:
[1] 王天梦, 王华, 李海阳. 面向补给任务的空间站共轨飞行器部署研究[J]. 载人航天, 2017, 23(5): 582-596 WANG Tianmeng, WANG Hua, LI Haiyang. Research on location deployment of space station co-orbital spacecraft for refueling mission[J]. Manned Spaceflight, 2017, 23(5): 582-596(in Chinese)
[2] 姜天骄. 筑梦天宫中国空间站将于2022年左右建成[J]. 科学大观园, 2020(19): 30-31 JIANG Tianjiao. Build a dream tiangong chinese space station to be completed around 2022[J]. Grand Garden of Science, 2020(19): 30-31(in Chinese)
[3] 白明生, 金勇, 雷剑宇, 等. 天舟一号货运飞船研制[J]. 载人航天, 2019, 25(2): 249-255 BAI Mingsheng, JIN Yong, LEI Jianyu, et al. Research on location deployment of tianzhou-1 cargo spacecraft[J]. Manned Spaceflight, 2019, 25(2): 249-255(in Chinese)
[4] 魏卫. 无人值守设备在压气机寿命试验中的应用[C]//第二届计量测试与航天发展论坛论文集, 北京, 2015: 553-558 WEI Wei. Application of unattended equipment in compressor life test[C]//China Conference of Second Forum for Metrology & Measurement and Aerospace Development, Beijing, 2015: 553-558(in Chinese)
[5] 金广明. 我国载人航天器推进系统技术发展[J]. 航天器工程, 2022, 31(6): 191-204 JIN Guangming. Technical development of propulsion system for China manned spacecraft[J]. Spacecraft Engineering, 2022, 31(6): 191-204(in Chinese)
[6] HAFELE B W, RAPOZO R R. Space station gas compressor technology study program, phase 1[R]. NASA-CR-183758,1990
[7] 江铭伟. 俄罗斯空间站推进剂补加程序分析[J]. 火箭推进, 2013, 39(4): 8-12 JIANG Mingwei. Analysis of propellant refueling program for russian space station[J]. Journal of Rocket Propulsion, 2013, 39(4): 8-12(in Chinese)
[8] HARLAND D M. The story of space station MIR[M]. Beilin: Springer, 2005: 302-310
[9] 廖瑛, 龚明方, 尹嘉娃, 等. 空间补加过程的建模与仿真研究[J]. 系统仿真学报, 2010, 22(6): 1535-1538 LIAO Ying, GONG Mingfang, YIN Jiawa, et al. Research on modeling and simulation of process of propellant refueling to space stations[J]. Journal of System Simulation, 2010, 22(6): 1535-1538(in Chinese)
[10] 孙威, 左岁寒, 张峤, 等. 膜盒贮箱推进剂补加过程的建模与仿真研究[J]. 航天器环境工程, 2015, 32(6): 589-592 SUN Wei, ZUO Suihan, ZHANG Qiao, et al. Simulation and analysis of propellant refueling process of membrane tank[J]. Spacecraft Environment Engineering, 2015, 32(6): 589-592(in Chinese)
[11] GREGORY T H, NEWMAN M. Thermal design consideration of the robotic refueling mission(RRM)[C]//41st International Conference on Environmental Systems, Portland, USA, 2011
[12] KRAUS A D, BAR-COHEN A. Thermal analysis and control of electronic equipment[M]. Washington: Hemisphere, 1983: 483-485
[13] 卢威, 黄家荣, 范宇峰, 等. 载人航天器密封舱流动和传热数值模型及其地面验证[J]. 宇航学报, 2011, 32(5): 959-965 LU Wei, HUANG Jiarong, FAN Yufeng, et al. Numerical model of flow and heat transfer for manned spacecraft pressurized cabin and its ground verification[J]. Journal of Astronautics, 2011, 32(5): 959-965(in Chinese)
[14] BAKER P. The story of manned space stations[M]. Berlin: Springer, 2007: 61-89