论文:2024,Vol:42,Issue(3):477-486
引用本文:
王渤文, 郑龙席, 程悦, 王超, 李勍, 卢杰. 出口直径对脉冲爆震清灰装置外场压力作用特性的影响研究[J]. 西北工业大学学报
WANG Bowen, ZHENG Longxi, CHENG Yue, WANG Chao, LI Qing, LU Jie. Study on the influence of outlet diameter on the out-field pressure action characteristics of pulse detonation cleaning device[J]. Journal of Northwestern Polytechnical University

出口直径对脉冲爆震清灰装置外场压力作用特性的影响研究
王渤文, 郑龙席, 程悦, 王超, 李勍, 卢杰
西北工业大学 动力与能源学院, 陕西 西安 710072
摘要:
脉冲爆震清灰技术是一种利用爆震波解耦产生的冲击波清除积灰的高效清洁技术,在炉内清洁领域具有巨大优势。为探究爆震清灰装置外场压力作用特性及装置出口直径对其压力作用特性的影响,以丙烷-空气为燃料,针对某型脉冲爆震清灰装置开展数值仿真与试验研究。结果表明:随着传播距离的增加,边缘处的弧状冲击波存在转变为平面波的趋势,冲击波的作用压力峰值趋于相近,且作用压力峰值的到达时间也趋于相近。当外场冲击波作用于非对流管束积灰面时,除爆震室轴线正对处发生正反射而产生一道压力峰值外,其余位置主要因发生斜反射而产生2道压力峰值。尾段出口直径与爆震室直径比值(直径比)为1时外场冲击波作用压力峰值最大,出口直径的增加或减小均会不同程度地削弱外场冲击波的压力峰值,直径比小于1的结构对外场冲击波的削弱效果最为显著,直径比大于1的结构削弱效果较次之;在直径比小于1时冲击波作用压力峰值随直径比增大而增大,当直径比大于1时冲击波作用压力峰值随直径比增大而减小。
关键词:    锅炉积灰    爆震清灰    冲击波    作用特征    填充比    直径比   
Study on the influence of outlet diameter on the out-field pressure action characteristics of pulse detonation cleaning device
WANG Bowen, ZHENG Longxi, CHENG Yue, WANG Chao, LI Qing, LU Jie
School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Pulse detonation cleaning technology is an efficient cleaning technology that is used inert shock waves generated by decoupling the detonation to remove ash and deposits. And it has great advantages in the field of furnace cleaning. In order to investigate the pressure distribution characteristics outside the detonation cleaning device and to explore the effect of the device outlet diameter on the pressure distribution characteristics, numerical simulations and experimental studies of pulse detonation cleaning device with using propane-air as the fuel has been carried out. The numerical simulation and experimental study on pulse detonation cleaning device by using propane-air as the fuel has been carried out. The results show that: as the propagation distance increases, there is a trend for the out-field arc shaped shock wave to transform into plane wave, and the applied pressure tends to be similar from the axis outward, and the time it acts on the ash accumulation surface also tends to be similar. When the external shock wave acts on the ash accumulation surface of the non-convective tube bundle, except for the positive reflection at the axial opposite position, which generates one pressure peak, the other positions mainly generate two pressure peaks due to oblique reflection. The ratio (diameter ratio) between the diameter of the tail outlet and the diameter of the detonation chamber is 1, the pressure peak of inert shock wave in the out-field is the largest. Increasing or decreasing the out diameter of the tail will weaken the action of the inert shock to different degrees. For diameter ratio smaller than 1, the pressure peak of the inert shock increases with increasing diameter ratio, while for diameter ratios larger than 1, decreases with increasing diameter ratio.
Key words:    boiler ash and deposits    detonation cleaning    shock wave    action characteristics    fill fraction    diameter ratio   
收稿日期: 2023-04-26     修回日期:
DOI: 10.1051/jnwpu/20244230477
通讯作者: 卢杰(1988—),副教授 e-mail:lujie@nwpu.edu.cn     Email:lujie@nwpu.edu.cn
作者简介: 王渤文(1998—),硕士研究生
相关功能
PDF(4509KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王渤文  在本刊中的所有文章
郑龙席  在本刊中的所有文章
程悦  在本刊中的所有文章
王超  在本刊中的所有文章
李勍  在本刊中的所有文章
卢杰  在本刊中的所有文章

参考文献:
[1] HARE N, RASUL M G, MOAZZEM S. A review on boiler deposition/foulage prevention and removal techniques for power plant[C]//Proceedings of the 5th IASME/WSEAS International Conference on Energy & Environment, 2010: 25
[2] HUQUE Z, ALI M R, KOMMALAPATI R. Application of pulse detonation technology for boiler slag removal[J]. Fuel Processing Technology, 2009, 90(4): 558-569
[3] THOMAS R A, HOCHSTEIN J, HARTY P. A novel boiler ash deposit removal system[C]//ASME Power Conference, 2006: 551-566
[4] LUPKES K, MCCORMICK A T. Harness detonation waves to clean boiler tubes[J]. Power, 2007, 151(10): 72-74
[5] 王忠伟. 高能燃气脉冲吹灰装置技术研究与应用[J]. 中国石油和化工标准与质量, 2013, 33(9): 59 WANG Zhongwei. Research and application of high energy gas pulse soot blowing device[J]. China Petroleum and Chemical Standard and Quality, 2013, 33(9): 59(in Chinese)
[6] ALLGOOD D, GUTMARK E, MEYER T, et al. Computational and experimental studies of pulse detonation engines[C]//41st Aerospace Sciences Meeting and Exhibit, 2003
[7] 于陆军, 范宝春, 董刚, 等. 单循环脉冲爆轰发动机内外流场的动力学结构[J]. 空气动力学学报, 2007(3): 357-361 YU Lujun, FAN Baochun, DONG Gang, et al. Dynamic structure of the internal and external flow field in a single-cycle pulse detonation engine[J]. Acta Aerodynamic Sinica, 2007(3): 357-361(in Chinese)
[8] 于陆军. 多循环脉冲爆轰发动机内、外流场的实验和数值研究[D]. 南京:南京理工大学, 2008 YU Lujun. Experimental and numerical studies on the internal and external flow field in multi-cycle pulse detonation engine[D]. Nanjing: Nanjing University of Science and Technology, 2008(in Chinese)
[9] 于陆军, 范宝春, 归明月, 等. 脉冲爆震发动机外流场数值模拟及实验[J]. 推进技术, 2008, 160(4): 426-430 YU Lujun, FAN Baochun, GUI Mingyue, et al. Computational and experimental studies on the external flow field of pulse detonation engines[J]. Journal of Propulsion Technology, 2008, 160(4): 426-430(in Chinese)
[10] LI Guoshuai, TAKAHIRO Ukai, KONSTANTINOS Kontis. Characterization of a novel open-ended shock tube facility based on detonation transmission tubing[C]//Aerospace Science and Technology, 2019
[11] AARON G. Experimental investigation into the off-design performance of a pulse detonation engine[R]. AIAA-2004-1208,2004
[12] PEACE J T, LU F K. Numerical study of pulse detonation engine nozzle and exhaust flow phenomena[C]//51st AIAA/SAE/ASEE Joint Propulsion Conference, 2015
[13] 王治武, 张昆, 郑龙席, 等. 喷管角度对脉冲爆震发动机性能影响数值研究[J]. 西北工业大学学报, 2015, 33(3): 456-461 WANG Zhiwu, ZHANG Kun, ZHENG Longxi, et al. Numerical simulation of the nozzle angle effect on PDE performance[J]. Journal of Northwestern Polytechnical University, 2015, 33(3): 456-461(in Chinese)
[14] MEI Daniel. Slag characterization and removal using pulse detonation technology during coal gasification[R]. DE-FG22-95MT95010, 1995
[15] HANJALIC K, SMAJEVIC I. Detonation-wave technique for on-load deposit removal from surfaces exposed to fouling: part II-full-scale application[J]. Journal of Engsneering for Gas Turbanes and Power, 1994, 116: 231-240
[16] 张义宁, 王家骅, 何小民, 等. 爆震室压力测量可靠性试验[J]. 航空动力学报, 2007(10): 1632-1638 ZHANG Yining, WANG Jiahua, HE Xiaomin, et al. Reliability test of pressure measurement in detonation chamber[J]. Journal of Aerospace Power, 2007(10): 1632-1638(in Chinese)
[17] HE H, ZHANG Z C, YU S, et al. Application of the CESE method to PDE plume dynamics using a Beowulf cluster[C]//40th AIAA Aerospace Sciences Meeting & Exhibit, 2002
[18] ZHANG Bo, LIU Hong, LI Yuanchang. The effect of instability of detonation on the propagation modes near the limits in typical combustible mixtures[J]. Fuel, 2019, 253: 305-310
[19] 曹涛, 孙浩, 周游, 等. 近地爆炸冲击波传播特性数值模拟与应用[J]. 兵器装备工程学报, 2020, 41(12): 187-191 CAO Tao, SUN Hao, ZHOU You, et al. Numerical simulation and application of shock wave propagation characteristics of near-ground explosion[J]. Journal of Ordnance Equipment Engineering, 2020, 41(12): 187-191(in Chinese)
[20] ISHII R, FUJIMOTO H, HATTA N, et al. Experimental and numerical analysis of circular pulse jets[J]. Journal of Fluid Mechanics, 1999, 392: 129-153
[21] ENDO M. Numerical analysis of pulsatile jet from exhaust pipe[J]. JSAE Review, 1999, 20(2): 243-249
[22] WANG K, FAN W, LU W, et al. Study on a liquid-fueled and valveless pulse detonation rocket engine without the purge process[J]. Energy, 2014, 71: 605-614