论文:2024,Vol:42,Issue(2):368-376
引用本文:
史国庆, 程嘉毅, 张建东, 杨啟明, 吴勇, 武凡. 基于反馈线性化的广义预测控制机械臂轨迹跟踪算法[J]. 西北工业大学学报
SHI Guoqing, CHENG Jiayi, ZHANG Jiandong, YANG Qiming, WU Yong, WU Fan. A trajectory tracking algorithm of generalized predictive control manipulator based on feedback linearization[J]. Journal of Northwestern Polytechnical University

基于反馈线性化的广义预测控制机械臂轨迹跟踪算法
史国庆1, 程嘉毅1, 张建东1, 杨啟明1, 吴勇1, 武凡2
1. 西北工业大学 电子信息学院, 陕西 西安 710072;
2. 成都飞机设计研究所, 四川 成都 610041
摘要:
分析了机械臂轨迹跟踪控制问题的特点,建立了二自由度机械臂动力学模型。为解决广义预测控制(generalized predictive control,GPC)算法难以适用于非线性系统的问题,在现有的GPC算法基础上,设计了基于反馈线性化的广义预测控制(feedback linearization-generalized predictive control,FL-GPC)算法框架,即底层为线性系统预测控制,非线性项使用预估值来进行代替,高层为迭代修正预估量,使用迭代计算的方式对非线性项进行预估。使用FL-GPC算法对二自由度机械臂的静态、动态轨迹跟踪任务进行了仿真。仿真结果表明,算法可以进行有效的机械臂轨迹跟踪控制。
关键词:    轨迹跟踪    非线性系统    广义预测控制    反馈线性化   
A trajectory tracking algorithm of generalized predictive control manipulator based on feedback linearization
SHI Guoqing1, CHENG Jiayi1, ZHANG Jiandong1, YANG Qiming1, WU Yong1, WU Fan2
1. School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710072, China;
2. Chengdu Aircraft Design & Research Institute, Chengdu 610041, China
Abstract:
This paper analyzes the characteristics of the trajectory tracking control problem of the manipulator and establishes a two-degree-of-freedom manipulator dynamic model. In order to solve the problem that generalized predictive control(GPC) algorithm is difficult to apply to nonlinear systems, a feedback linearization-based generalized predictive control(FL-GPC) algorithm framework is designed. The bottom layer of the algorithm is the linear system predictive control and the non-linear term is replaced by the estimated value. The upper level is iteratively revised estimates and the non-linear term is estimated using the iterative calculation method. Finally, the FL-GPC algorithm is used to simulate the static and dynamic trajectory tracking tasks of a two-degree-of-freedom manipulator. Simulation results show that the algorithm can perform effective manipulator trajectory tracking control.
Key words:    trajectory tracking    nonlinear system generalized    predictive control    feedback linearization   
收稿日期: 2023-02-22     修回日期:
DOI: 10.1051/jnwpu/20244220368
基金项目: 陕西省重点研发计划(2022GY-089)与陕西省自然科学基础研究计划(2022JQ-593)资助
通讯作者: 张建东(1974—),副教授 e-mail:jdzhang@nwpu.edu.cn     Email:jdzhang@nwpu.edu.cn
作者简介: 史国庆(1974—),副教授
相关功能
PDF(2205KB) Free
打印本文
把本文推荐给朋友
作者相关文章
史国庆  在本刊中的所有文章
程嘉毅  在本刊中的所有文章
张建东  在本刊中的所有文章
杨啟明  在本刊中的所有文章
吴勇  在本刊中的所有文章
武凡  在本刊中的所有文章

参考文献:
[1] 马克W·斯庞, 赛斯·哈钦森, M·维德雅萨加. 机器人建模和控制[M]. 北京:机械工业出版社, 2016 MARK W·Spang, SETH Hutchinson, M·Vaderjasaga. Robot modeling and control[M]. Beijing: Machinery Industry Press, 2016 (in Chinese)
[2] PETER Corke. 机器人学、机器视觉与控制[M]. 北京:电子工业出版社, 2016 PETER Corke. Robotics, Machine Vision and Control[M]. Beijing: Electronics Industry Press, 2016 (in Chinese)
[3] 丁学恭. 机器人控制研究[M]. 杭州:浙江大学出版社, 2006 DING Xuegong. Research on robot control[M]. Hangzhou: Zhejiang University Press, 2006 (in Chinese)
[4] CERVANTES I, ALVARE-RAMIREZ J. On the PID tracking control of robot manipulators[J]. Systems & Control Letters, 2001, 42(1): 37-46
[5] 张铁, 洪景东, 李秋奋, 等. 基于BP神经网络的机器人波动摩擦力矩修正方法[J]. 工程科学学报, 2019, 41(8): 1085-1091 ZHANG Tie, HONG Jingdong, LI Qiufen, et al. Wave friction correction method for a robot based on BP neural net-work[J]. Journal of Engineering Science, 2019,41(8): 1085-1091 (in Chinese)
[6] 马宇豪, 梁雁冰. 一种基于六次多项式轨迹规划的机械臂避障算法[J]. 西北工业大学学报, 2020, 38(2): 392-400 MA Yuhao, LIANG Yanbing. An obstacle avoidance algorithm for manipulator based on sixth-order polynomial trajectory planning[J]. Journal of Northwest Polytechnical University, 2020,38(2): 392-400 (in Chinese)
[7] YANRU L, YAN Z. Two-DOF manipulator trajectory tracking control based on unfalsified control[C]//The 27th Chinese Cont-rol and Decision Conference, Qingdao, 2015: 4563-4566
[8] ABDALLA A Y, ABDALLA T Y, CHYAID A M. Grasshopper algorithm based fuzzy system for trajectory tracking of robot manipulator[C]//2022 International Conference on Electrical, Computer and Energy Technologies, Prague, 2022: 1-5
[9] ZHANG X, GU J, ASAD M U, et al. Beetle bee algorithm applied to trajectory tracking control of omni manipulator[C]//2022 International Conference on Emerging Trends in Electrical, Control, and Telecommunication Engineering, Lahore, 2022: 1-5
[10] SINGH R, PRASAD L B. Optimal trajectory tracking of robotic manipulator using ant colony optimization[C]//2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering, Gorakhpur, 2018: 1-6
[11] SHAOMING L, RUIPENG L. Research on trajectory tracking control of multiple degree of freedom manipulator[C]//2017 32nd Youth Academic Annual Conference of Chinese Association of Automation, Hefei, 2017: 218-222
[12] JUAN W, YANG H, XIE H. Control of manipulator trajectory tracking based on improved RBFNN[C]//2009 International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, 2009: 142-145
[13] MIRÓJ V, WHITE A S, GILL R. On-line time-optimal algorithm for manipulator trajectory planning[C]//1997 European Control Conference, Brussels, 1997: 2611-2616
[14] ATALAR-AYYLLDLZ B, KARAHAN O. Tuning of fractional order pid controller using CS algorithm for trajectory tracking control[C]//2018 6th International Conference on Control Engineering & Information Technology, Istanbul, 2018: 1-6
[15] ZHANG L, CHENG L. An adaptive neural network control method for robotic manipulators trajectory tracking[C]//2019 Chinese Control and Decision Conference, Nanchang, 2019: 4839-4844
[16] WIDYIANTO A, YAZID E, MIRDANIES M, et al. Optimization of PD controller using ACO for the trajectory tracking of a ship-mounted two-DOF manipulator system[C]//2022 6th International Conference on Information Technology, Information Systems and Electrical Engineering, Yogyakarta, 2022: 634-638
[17] LAMPINEN S, NIEMI J, MATTILA J. Flow-bounded trajectory-scaling algorithm for hydraulic robotic manipulators[C]//2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Boston, 2020: 619-624
[18] ZHU Q, WANG J, ZHANG W A, et al. A Geometry based IK solver and b-spline method for trajectory tracking of 5-DOF manipulators[C]//2018 37th Chinese Control Conference, Wuhan, 2018: 3865-3870
[19] 杨易旻. 基于极限学习的系统辨识方法及应用研究[D]. 长沙:湖南大学, 2013 YANG Yimin. Researches on extreme learning theory for system identification and applications[D]. Changsha: Hunan University, 2013 (in Chinese)
[20] 于欣波, 贺威, 薛程谦, 等. 基于扰动观测器的机器人自适应神经网络跟踪控制研究[J]. 自动化学报, 2019, 45(7): 1307-1324 YU Xinbo, HE Wei, XUE Chengqian, et al. Disturbance observer-based adaptive neural network tracking control for robots[J]. Acta Automatica Sinica, 2019,45(7): 1307-1324 (in Chinese)
[21] 王雷坤. 凿岩机器人钻臂运动轨迹控制研究[D]. 赣州:江西理工大学, 2019 WANG Leikun. Research on trajectory control of drilling arm of rock drilling robot[D]. Ganzhou: Jiangxi University of Science and Technology, 2019 (in Chinese)
[22] 崔敏其. SCARA机器人的拉格朗日动力学建模[J]. 机械设计与制造, 2013(12): 76-78 CUI Minqi. Dynamical modeling of SCARA robot based on lagrange formulation[J]. Mechanical Design and Manufacturing, 2013 (12): 76-78 (in Chinese)
[23] 周岗, 姚琼荟, 陈永冰, 等. 基于输入输出线性化的船舶全局直线航迹控制[J]. 控制理论与应用, 2007(1): 117-121 ZHOU Gang, YAO Qionghui, CHEN Yongbing, et al. Global straight-line tracking control of ships based on input-output linearization[J]. Control Theory and Application, 2007 (1): 117-121 (in Chinese)
[24] 李铁山, 杨盐生, 郑云峰. 不完全驱动船舶航迹控制输入输出线性化设计[J]. 系统工程与电子技术, 2004(7): 945-948 LI Tieshan, YANG Yansheng, ZHENG Yunfeng. Input-output linearization designs for straight-line tracking control of undera-ctuated ships[J]. System Engineering and Electronics, 2004(7): 945-948 (in Chinese)
[25] 帅鑫, 李艳君, 吴铁军. 一种柔性机械臂末端轨迹跟踪的预测控制算法[J]. 浙江大学学报, 2010, 44(2): 259-264 SHUAI Xin, LI Yanjun, WU Tiejun. Real time predictive control algorithm for endpoint trajectory tracking of flexible mani-pulator[J]. Journal of Zhejiang University, 2010, 44(2): 259-264 (in Chinese)
[26] SHOHEI Hagane, LIZ Katherine Rincon Ardila, TAKUMA Katsumata, et al. Adaptive generalized predictive controller and cartesian force control for robot arm using dynamics and geometric identification[J]. Journal of Robotics and Mechatronics, 2018, 30(6): 927-942
[27] 程林云, 张雷, 宋晓娜. 基于RBF神经网络的机械臂自适应控制方法[J]. 计算机测量与控制, 2019, 27(7): 79-84 CHENG Linyun, ZHANG Lei, SONG Xiaona. Adaptive control method of manipulator based on RBF neural network[J]. Computer Measurement and Control, 2019, 27(7): 79-84 (in Chinese)