论文:2024,Vol:42,Issue(2):362-367
引用本文:
王磊, 高翔, 胡潇潇, 刘海涛. 基于高阶幂的单快拍LDACS系统波达方向估计[J]. 西北工业大学学报
WANG Lei, GAO Xiang, HU Xiaoxiao, LIU Haitao. Single snapshot DOA estimation algorithm based on high-order power in LDACS[J]. Journal of Northwestern Polytechnical University

基于高阶幂的单快拍LDACS系统波达方向估计
王磊, 高翔, 胡潇潇, 刘海涛
中国民航大学 民航航班广域监视与安全管控技术重点实验室, 天津 300300
摘要:
L波段数字航空通信系统(L band digital aeronautical communication system,LDACS)是未来航空宽带通信重要的基础设施之一,针对LDACS信号容易受到相邻波道大功率测距仪(distance measuring equipment,DME)信号干扰的问题,提出了联合正交投影干扰抑制与单快拍稀疏分解的波达方向(direction of arrival,DOA)估计方法。通过子空间投影抑制DME干扰,然后使用单快拍数据构建伪协方差矩阵,对伪协方差矩阵求高阶幂,之后进行奇异值分解,并利用约束条件求解稀疏解得到期望信号来向的估计值。所提方法使用高阶伪协方差矩阵降低了噪声影响,仅用单快拍就可以准确估计LDACS信号的入射方向。仿真结果表明,改进单快拍高级幂(improved single snapshot high order power,ISS-HOP) L1-SVD算法的估计精度优于ISS-HOP-MUSIC算法。该方法可以有效抑制DME干扰,提高OFDM接收机性能。
关键词:    L波段数字航空通信系统    测距仪    波达方向估计    改进单快拍高阶幂算法   
Single snapshot DOA estimation algorithm based on high-order power in LDACS
WANG Lei, GAO Xiang, HU Xiaoxiao, LIU Haitao
CAAC Key Laboratory of Civil Aviation Wide Surveillance and Safety Operation Management & Control Technology, Civil Aviation University of China, Tianjin 300300, China
Abstract:
The L-band digital aeronautical communication system (LDACS) is one of the essential infrastructures for future aviation broadband communication. To address the problem of interference from adjacent high-power distance measuring equipment (DME) signals, a joint orthogonal projection interference suppression and single-snapshot sparse decomposition direction of arrival (DOA) estimation method is proposed. Firstly, the DME interference is suppressed by using the subspace projection, and then a pseudo-covariance matrix is constructed by using single-snapshot data. High-order power of the pseudo-covariance matrix is calculated, followed by singular value decomposition and sparse solution obtained using constraints to estimate the desired target. The proposed method in this paper reduces the impact of noise by utilizing high-order pseudo-covariance matrix, enabling accurate estimation of the DOA of OFDM signals with only a single snapshot. Simulation results show that the estimation accuracy by using ISS-HOP-L1-SVD algorithm is better than that via ISS-HOP-MUSIC algorithm. This method can effectively suppress DME interference and improve the performance of the OFDM receiver.
Key words:    L-band digital aeronautical communication system(LDACS)    distance measuring equipment(DME)    direction of arrival(DOA) estimation    improved single snapshot high order power(ISS-HOP) algorithm   
收稿日期: 2023-04-21     修回日期:
DOI: 10.1051/jnwpu/20244220362
基金项目: 国家自然科学基金重点项目(U2233216)、中国交通教育研究会教育科学研究课题(JT2022YB138)与中国民航大学民航航班广域监视与安全管控技术重点实验室开放基金(202101)资助
通讯作者: 王磊(1981—) e-mail:wanglei@cauc.edu.cn     Email:wanglei@cauc.edu.cn
作者简介: 王磊(1981—),副教授
相关功能
PDF(1725KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王磊  在本刊中的所有文章
高翔  在本刊中的所有文章
胡潇潇  在本刊中的所有文章
刘海涛  在本刊中的所有文章

参考文献:
[1] SCHNELL M, EPPLE U, SHUTIN D, et al. LDACS: future aeronautical communications for air-traffic management[J]. IEEE Communications Magazine, 2014, 52(5): 104-110
[2] BATTISTA G, KUMAR R, NOSSEK E, et al. Placing LDACS-based ranging sources for robust RNP 1.0 accuracy en-route[C]//IEEE/AIAA 36th Digital Avionics Systems Conference, St.Petersburg, USA, 2017
[3] FILIP-DHAUBHADEL A, SHUTIN D. LDACS-based non-cooperative surveillance multistatic radar design and detection cover-age assessment[C]//IEEE/AIAA 38th Digital Avionics Systems Conference, San Diego, USA, 2019
[4] MÄURER N. Paving the way for an IT security architecture for LDACS: a datalink security threat-and risk analysis[C]//Integrated Communications, Navigation, Surveillance Conference, Herndon, USA, 2018
[5] MÄURER N, GRÄUPL T, SCHMITT C. Evaluation of the LDACS Cybersecurity Implementation[C]//IEEE/AIAA 38th Digital Avionics Systems Conference, San Diego, USA, 2019
[6] EWERT T, MÄURER N, GRÄUPL T. Improving usable LDACS data rate via certificate validity optimization[C]//Integrated Communication, Navigation and Surveillance Conference, Dulles, USA, 2022
[7] ABD-ELATY E, EL-AGOOZ S, ZEKRY A. Compact spread spectrum LDACS wavelet based for DME interference mitigation[C]//National Radio Science Conference, Port Said, Egypt, 2019
[8] AGRAWAL N, AMBEDE A, DARAK S J, et al. Design and implementation of low complexity reconfigurable filtered-OFDM-based LDACS[J]. IEEE Trans on Circuits and Systems II: Express Briefs, 2021, 68(7): 2399-2403
[9] ROY S, CHANDRA A. On the design of variable Filtered-OFDM based LDACS for future generation air-to-ground communication system[J]. IEEE Trans on Circuits and Systems II: Express Briefs, 2022, 69(2): 644-648
[10] FANTAPPIE P. L-DACS spectral efficiency[C]//Integrated Communications, Navigation and Surveillance Conference, Herndon, USA, 2019
[11] EPPLE U, BRANDES S, GLIGOREVIC S, et al. Receiver optimization for L-DACS1[C]//IEEE/AIAA 28th Digital Avionics Systems Conference, Orlando, USA, 2009
[12] EPPLE U, SHUTIN D, SCHNELL M. Mitigation of impulsive frequency-selective interference in OFDM based systems[J]. IEEE Wireless Communications Letters, 2012, 1(5): 484-487
[13] EPPLE U, SCHNELL M. Adaptive threshold optimization for a blanking nonlinearity in ofdm receivers[C]//Global Communications Conference, Anaheim, USA, 2012
[14] RAO S, PANDYA A, OSTROOT C. Phased array antennas for aircraft applications[C]//IEEE Indian Conference on Antennas and Propogation, Hyderabad, India, 2018
[15] GÜRBÜZ A, MIELKE D M, BELLIDO-MANGANELL M A. On the Application of beamforming in LDACS[C]//Integrated Communication, Navigation and Surveillance Conference, Dulles, USA, 2022
[16] 王磊, 李广雪, 李冬霞, 等. 基于OFDM符号特征的干扰抑制与盲波束形成方法[J]. 控制与决策, 2020, 35(6): 1397-1402 WANG Lei, LI Guangxue, LI Dongxia, et al. Interference suppression and blind beamforming based on OFDM symbol characteristic[J]. Control and Decision, 2020, 35(6): 1397-1402 (in Chinese)
[17] 王磊, 孙海霞, 刘明莉, 等. 基于信号特性的宽带航空数据链信号来向估计方法[J]. 信号处理, 2022, 38(7): 1458-1466 WANG Lei, SUN Haixia, LIU Mingli, et al. Signal direction estimation method for wideband aeronautical data link system based on signal characteristics[J]. Journal of Signal Processing, 2022, 38(7): 1458-1466 (in Chinese)
[18] DONOHO D L. Compressed sensing[J]. IEEE Trans on Information Theory, 2006, 52(4): 1289-1306
[19] MALIOUTOV D, CETIN M, WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Trans on Signal Processing, 2005, 53(8): 3010-3022
[20] CANDES E J, ROMBERG J K, TAO T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223
[21] 谢鑫, 李国林, 刘华文. 采用单次快拍数据实现相干信号DOA估计[J]. 电子与信息学报, 2010, 32(3): 604-608 XIE Xin, LI Guolin, LIU Wenhua. DOA estimation of coherent signals using one snapshot[J]. Journal of Electronics & Information Technology, 2010, 32(3): 604-608 (in Chinese)
[22] 蒋柏峰, 吕晓德, 向茂生. 一种基于阵列接收信号重排的单快拍DOA估计方法[J]. 电子与信息学报, 2014, 36(6): 1334-1339 JIANG Baifeng, LYU Xiaode, XIANG Maosheng. Single snapshot DOA estimation method based on rearrangement of array receiving signal[J]. Journal of Electronics & Information Technology, 2014, 36(6): 1334-1339 (in Chinese)
[23] EUROCONTROL. PJ.14-W2-60 TRL6 Final LDACS A/G Specification[EB/OL]. (2023-03-10)[2023-04-08]. https://www.ldacs.com/wp-content/uploads/2023/03/SESAR2020_PJ14-W2-60_TRL6_D3_1_230_3rd_LDACS_AG_Specification_v1.0.0.pdf