论文:2024,Vol:42,Issue(2):353-361
引用本文:
郭仲杰, 程新齐, 许睿明, 刘绥阳. 基于自适应校正技术的拼接型像素阵列一致性驱动方法研究[J]. 西北工业大学学报
GUO Zhongjie, CHENG Xinqi, XU Ruiming, LIU Suiyang. Study on consistency driving method of stitching pixel array based on self-adaptive correction technique[J]. Journal of Northwestern Polytechnical University

基于自适应校正技术的拼接型像素阵列一致性驱动方法研究
郭仲杰, 程新齐, 许睿明, 刘绥阳
西安理工大学 自动化与信息工程学院, 陕西 西安 710048
摘要:
随着拼接工艺在超大阵列CMOS图像传感器中的应用,传统的时钟树同步设计方法已不再适用于像素阵列的双侧驱动电路中,同一行像素阵列的双侧驱动面临直流穿通和坏行的严重问题。基于片上自适应校正思想提出了一种可应用于拼接型像素阵列的一致性驱动方法。该方法根据芯片工作环境的变化进行自适应实时校正,具有结构简单和可靠性高等特点。基于55 nm工艺,采用所提方法在一款12 288×12 288的150M像素规模、芯片面积高达77 mm×84 mm的超大阵列CMOS图像传感器中进行了实际应用和全面验证。实验结果表明:在500 MHz的主时钟、125 kHz的行时钟下,双侧行驱动的非一致性由17.5 ns减小至2 ns (一个时钟周期)以内,一致性提高了9倍以上,确保了亿级像素规模的超大面阵图像传感器的帧频达到10帧以上。
关键词:    CMOS图像传感器    超大阵列    行驱动    一致性   
Study on consistency driving method of stitching pixel array based on self-adaptive correction technique
GUO Zhongjie, CHENG Xinqi, XU Ruiming, LIU Suiyang
School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China
Abstract:
With the application of stitching technology in CMOS image sensors of large arrays, the traditional clock tree synchronization design method is not suitable for the two-side drive circuit of pixel arrays, resulting in the serious problems of DC penetration and bad row of the two-side drive of pixel arrays in the same row. In this paper, in terms of the idea of self-adaptive correction on chip, a consistency driving method which can be applied to stitching pixel arrays is proposed. The method can be adapted to the change of chip working environment, and has the characteristics of simple structure and high reliability. Based on 55 nm technology, the present method is applied and verified in a large array CMOS image sensor with 150M pixel size and 77 mm×84 mm chip area of 12 288×12 288. The experimental results show that, under a master clock of 500 MHz and a row clock of 125 kHz, the inconsistency of bilateral row drive is reduced from 17.5 ns to less than 2 ns (one clock period), and the consistency is improved by above than 9 times, ensuring that the frame frequency of the super-array image sensor with a scale of 100 million pixels can reach more than 10 frames.
Key words:    CMOS image sensor    super-large array    row driving    consistency   
收稿日期: 2023-04-15     修回日期:
DOI: 10.1051/jnwpu/20244220353
基金项目: 国家自然科学基金面上项目(62171367)与陕西省创新能力支撑计划(2022TD-39)资助
通讯作者: 郭仲杰(1982—) e-mail:zjguo@xaut.edu.cn     Email:zjguo@xaut.edu.cn
作者简介: 郭仲杰(1982—),教授
相关功能
PDF(3839KB) Free
打印本文
把本文推荐给朋友
作者相关文章
郭仲杰  在本刊中的所有文章
程新齐  在本刊中的所有文章
许睿明  在本刊中的所有文章
刘绥阳  在本刊中的所有文章

参考文献:
[1] KIM Y, CHOI W, PARK D, et al. A 1/2.8-inch 24M pixel CMOS image sensor with 0.9 μm unit pixels separated by full-depth deep-trench isolation[C]//Proceedings of the 2018 IEEE International Solid-State Circuits Conference, 2018
[2] KIM H, PARK J, JOE I, et al. 5.6 A 1/2.65in 44M pixel CMOS image sensor with 0.7 μm pixels fabricated in advanced full-depth deep-trench isolation technology[C]//Proceedings of the 2020 IEEE International Solid-State Circuits Conference, 2020
[3] HSU T H, CHEN Y K, WU J S, et al. 5.9 A 0.8 V multimode vision sensor for motion and saliency detection with ping-pong PWM pixel[C]//Proceedings of the 2020 IEEE International Solid-State Circuits Conference, 2020
[4] SONG K, KIM D, KIM J, et al. A scalable 300-GHz multichip stitched CMOS detector array[J]. IEEE Trans on Microwave Theory and Techniques, 2022, 70(3): 1797-809
[5] XU J, LI W, NIE K, et al. A Method to reduce the effect on image quality caused by resistance of column bus[J]. IEEE Trans on Very Large Scale Integration Systems, 2019, 27(1): 173-181
[6] GAO J, ZHANG D, NIE K, et al. Analysis and optimization design of the column bus parasitic effects on large-array CMOS image sensor[J]. Microelectronics Journal, 2019, 96: 104681
[7] BOGAERTS J, LAFAILLE R, BORREMANS M, et al. 6.3 105×65 mm2 391M pixel CMOS image sensor with>78 dB dynamic range for airborne mapping applications[C]//Proceedings of the 2016 IEEE International Solid-State Circuits Conference, 2016
[8] ZHU J, LIU D, ZHANG W, et al. Systematic experimental study on stitching techniques of CMOS image sensors[J]. IEICE Electronics Express, 2016, 13(15): 20160441
[9] 高静, 张天野, 聂凯明, 等. 超大阵列CMOS图像传感器时序控制驱动电路设计[J]. 天津大学学报, 2021, 54(1): 75-81 GAO Jing, ZHANG Tianye, NIE Kaiming, et al. Design of timing driven circuit for ultra large array CMOS image sensor[J]. Journal of Tianjin University, 2021,54(1): 75-81 (in Chinese)
[10] SONG Y, LI P, LIU Z, et al. Buffer reduction for congestion control during timing optimization[C]//Proceedings of the 2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications, 2022
[11] GUO Z J, YU N M, WU L S. A synchronous driving approach based on adaptive delay phase-locked loop for stitching CMOS image sensor[J]. IEICE Electronics Express, 2020, 17(3): 20190642
[12] TOTSUKA H, TSUBOI T, MUTO T, et al. 6.4 An APS-H-size 250 Mpixel CMOS image sensor using column single-slope ADCs with dual-gain amplifiers[C]//Proceedings of the 2016 IEEE International Solid-State Circuits Conference, 2016
[13] JUN J, SEO H, KWON H, et al. A 0.7 μm-pitch 108M pixel nonacell-based CMOS image sensor with decision-feedback technique[C]//Proceedings of the 2022 IEEE International Symposium on Circuits and Systems, 2022
[14] GUO Z J, CHENG X Q, XU R M, et al. A 1G pixel 10FPS CMOS image sensor using pixel array high-speed readout technology[J]. Integration-The VLSI Journal, 2023, 89: 114-122
[15] OGATA M, OKABE Y, NISHI T. Simple RC models of distributed RC lines in consideration with the delay time[C]//Proceedings of the 2004 IEEE International Symposium on Circuits and Systems, 2004