论文:2024,Vol:42,Issue(2):295-302
引用本文:
米毅, 李爱军, 温亚军, 范志鹏, 胡雪松. 民用客机负加速度试飞实时预测及告警技术研究[J]. 西北工业大学学报
MI Yi, LI Aijun, WEN Yajun, FAN Zhipeng, HU Xuesong. Study on real-time prediction and warning technology for negative acceleration flight test of civil airplanes[J]. Journal of Northwestern Polytechnical University

民用客机负加速度试飞实时预测及告警技术研究
米毅1,2,3, 李爱军1,3, 温亚军2,3, 范志鹏2,3, 胡雪松1
1. 西北工业大学 自动化学院, 陕西 西安 710129;
2. 中国商飞民用飞机试飞中心, 上海 201324;
3. 上海民机试飞工程技术研究中心, 上海 201324
摘要:
现代民用飞机通过一系列严苛的飞行试验来验证飞机设计性能的极限,因此飞行试验任务具有高风险、技术复杂的特点。其中负加速度试飞旨在验证飞机动力装置、辅助动力装置以及与之有关的任何部件或系统在负加速度条件下不会发生危险故障。负加速度试飞的风险等级是高风险。针对民用客机负加速度试飞提出一种实时预测及告警技术:开发针对负加速度试飞场景的融合仿真系统,精度验证结果表明系统可以满足工程应用的需要;通过理论分析给出影响负加速度试飞的主要因素,为仿真计算提供方向;利用BP神经网络算法和极限梯度提升(XGBoost)算法,建立基于补偿因子的负加速度试飞预测模型,并开发负加速度试飞实时预测及告警程序。所提技术应用于某型民机的负加速度试飞中,预测结果表明负加速度试飞实时预测及告警程序的精度可以满足试飞监控的要求。
关键词:    负加速度试飞    实时预测及告警    BP神经网络    XGBoost算法   
Study on real-time prediction and warning technology for negative acceleration flight test of civil airplanes
MI Yi1,2,3, LI Aijun1,3, WEN Yajun2,3, FAN Zhipeng2,3, HU Xuesong1
1. School of Automation, Northwestern Polytechnical University, Xi'an 710072, China;
2. COMAC Flight Test Center, Shanghai 201324, China;
3. Shanghai Civil Aircraft Flight Test Engineering Technology Research Center, Shanghai 201324, China
Abstract:
The flight test of modern civil aircraft verifies the limits of aircraft design performance through a series of rigorous flight tests. Flight test mission is characterized by high risk and complex technology. The negative acceleration flight test is to verify that the aircraft power unit, auxiliary power unit, or any component or system related to it shall not have dangerous faults during negative acceleration. The risk level of negative acceleration flight test is high-risk. This paper presents a real-time prediction and alarm technology for negative acceleration flight test of civil airliners. Firstly, a fusion simulation system for the flight test scene of negative acceleration was developed. The accuracy verification results indicate that the system can meet the requirements of engineering applications. Secondly, the main factors that affect the negative acceleration flight test are given through theoretical analysis, which provides a guidance for simulation. Finally, the negative acceleration prediction model based on compensation factor is established by using BP neural network algorithm and XGBoost algorithm. And the real-time prediction and alarm program of negative acceleration flight test is developed, which is used in negative acceleration flight test of a certain civil aircraft. The prediction results indicate that the accuracy of real-time prediction and alarm program can meet the requirements of flight test monitoring.
Key words:    negative acceleration flight test    real-time prediction and warning    BP neural network    XGBoost algorithm   
收稿日期: 2023-04-08     修回日期:
DOI: 10.1051/jnwpu/20244220295
基金项目: 上海市经济和信息化委员会工业强基项目(GYQJ-2017-5-08)资助
通讯作者: 胡雪松(1998—),博士研究生 e-mail:hxs2020@mail.nwpu.edu.cn     Email:hxs2020@mail.nwpu.edu.cn
作者简介: 米毅(1982—),博士研究生
相关功能
PDF(2207KB) Free
打印本文
把本文推荐给朋友
作者相关文章
米毅  在本刊中的所有文章
李爱军  在本刊中的所有文章
温亚军  在本刊中的所有文章
范志鹏  在本刊中的所有文章
胡雪松  在本刊中的所有文章

参考文献:
[1] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 73-88 ZHOU Zhihua. Machine learning[M]. Beijing: Tsinghua University Press, 2016: 73-88 (in Chinese)
[2] 伊恩·古德费洛, 约书亚·本吉奥, 亚纶·库维尔. 深度学习[M]. 赵申剑, 黎彧君, 符天凡,等, 译. 北京: 人民邮电出版社, 2021: 105-137 GOODFELLOW Ian, BENGIO Yoshua, COURVILLE Aaron. Deep learning[M]. ZHAO Shenjian, LI Yujun, FU Tianfan, et al, Translated. Beijing: People's Posts and Telecommunications Publishing House, 2021: 105-137 (in Chinese)
[3] NGUYEN D H, WIDROW B. Neural networks for self-learning control systems[J]. IEEE Control Systems Magazine, 1990, 10(3): 18-23
[4] CHEN F C. Back-propagation neural networks for nonlinear self-tuning adaptive control[J]. IEEE Control Systems Magazine, 1990, 10(3): 44-48
[5] CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2016: 785-794
[6] 中国民用航空局飞行标准司. 飞机飞行模拟机鉴定性能标准[S]. AC-60-FS-2019-006, 2019 Flight Standards Department of the Civil Aviation Administration of China. Aircraft Flight Simulator Qualification Performance Standards[S]. AC-60-FS-2019-006, 2019 (in Chinese)
[7] WEN Yajun. Simulation analysis of a certain civil aircraft's negative acceleration flight[C]//Proceedings of the International Conference on Aerospace System Science and Engineering, Singapore, 2021: 163-173
[8] 王昭, 田小涛, 黄萌, 等. 基于PSO-BP神经网络的固冲发动机推力估计器设计[J]. 航空动力学报, 2022, 37(7): 1487-1494 WANG Zhao, TIAN Xiaotao, HUANG Meng, et al. Design of thrust estimator for solid rocket engine based on PSO-BP neural network[J]. Journal of Aerodynamics, 2022, 37(7): 1487-1494 (in Chinese)
[9] 王文中, 张树生, 余隋怀. 基于粒子群优化的BP神经网络图像复原算法研究[J]. 西北工业大学学报, 2018, 36(4): 709-714 WANG Wenzhong, ZHANG Shusheng, YU Suihuai. Image resteoration by BP neural based on PSO[J]. Journal of Northwestern Polytechnical University, 2018, 36(4): 709-714 (in Chinese)
[10] 刘范东. 前向神经网络在飞行器纵向控制系统中的应用研究[D]. 西安: 西北工业大学, 2004 LIU Fandong. Research on the application of forward neural networks in aircraft longitudinal control systems[D]. Xi'an: Northwestern Polytechnical University, 2004 (in Chinese)
[11] ZHONG R, JOHNSON JR R, CHEN Z. Generating pseudo density log from drilling and logging-while-drilling data using extreme gradient boosting(XGBoost)[J]. International Journal of Coal Geology, 2020, 97(3): 605-623
[12] 李庆阔, 张子卿, 张英杰, 等. 基于机器学习XGBoost算法的跨音速离心压气机扩压器气动优化设计[J]. 工程热物理学报, 2021, 42(8): 1970-1978 LI Qingkuo, ZHANG Ziqing, ZHANG Yingjie, et al. Optimization design for the diffuser vanes of a transonic centrifugal compressor based on the XGBoost algorithm[J]. Journal of Engineering Thermophysics, 2021, 42(8): 1970-1978 (in Chinese)
[13] 李昌林, 童歆, 虞培祥, 等. 基于XGBoost的叶型表面转捩位置预测新方法[J/OL]. [2022-12-30](2023-02-12). https://doi.org/10.13224/j.cnki.jasp.20220210 LI Changlin, Tong Xin, YU Peixiang, et al. New method for predicting the transition position of airfoil surface based on xgboost model[J/OL]. [2022-12-30](2023-02-12). https://doi.org/10.13224/j.cnki.jasp.20220210 (in Chinese)
[14] EUGENE Mangortey, DYLAN Monteiro, JAMEY Ackley, et al. Application of machine learning techniques to parameter selection for flight risk identification[C]//AIAA Scitech 2020 Forum, Orlando, 2020: 1850
[15] XU Maojun, WANG Jian, LIU Jinxin, et al. An improved hybrid modeling method based on extreme learning machine for gas turbine engine[J]. Aerospace Science and Technology, 2020, 107: 106333