论文:2024,Vol:42,Issue(2):269-277
引用本文:
王超, 郑龙席, 王渤文, 程悦, 张军利, 李勍. 结构参数对闭口体系新型激波吹灰器工作特性的影响研究[J]. 西北工业大学学报
WANG Chao, ZHENG Longxi, WANG Bowen, CHENG Yue, ZHANG Junli, LI Qing. Study of the influence of structural parameters on the operating characteristics of a new type of surge soot blower in the closed-ended system[J]. Journal of Northwestern Polytechnical University

结构参数对闭口体系新型激波吹灰器工作特性的影响研究
王超, 郑龙席, 王渤文, 程悦, 张军利, 李勍
西北工业大学 动力与能源学院, 陕西 西安 710129
摘要:
锅炉吹灰器可以有效实现清除锅炉内部的积灰,提高锅炉运行效率,对锅炉安全运行具有重要意义。SPG型激波吹灰器是在传统激波吹灰器基础上发展而来的闭口体系新型高性能吹灰器,使用数值方法对该装置的可行性进行验证,并分析工作特性,可以为实际应用与改进提供参考。基于CFD技术,将SPG型激波吹灰器作为研究对象,使用动网格技术对设备内活塞的真实运动过程进行仿真模拟,利用Fluent软件模拟计算SPG型激波吹灰器内部流场的连续变化这一动态过程,并通过调整喷管、燃烧室以及压力蓄能器的结构参数,在出口处监测得到各部件结构参数变化对排气特性的影响规律,获取其工作特性。结果表明:喷管的长径比从2增加到4时,出口参数峰值出现滞后现象,但压力峰值与速度峰值获得显著提升,且喷管的扩张段改为直管可以降低膨胀损失,适当增加喷管长径比并直接连接直管是一种较好的方案;燃烧室径向和轴向壁面之间的间距缩短均可使出口压力峰值提高,但轴向距离缩短压力峰值增加幅度更大;在压力蓄能器中,去除阻尼装置压力提升较少,且无法减缓活塞复位,使排出气体减少,去除限位器后喷管出口压力大幅提高,但其峰值持续时间变短。
关键词:    SPG型激波吹灰器    内部流场    出口压力峰值    数值模拟   
Study of the influence of structural parameters on the operating characteristics of a new type of surge soot blower in the closed-ended system
WANG Chao, ZHENG Longxi, WANG Bowen, CHENG Yue, ZHANG Junli, LI Qing
School of Power and Energy, Northwestern Polytechnical University, Xi'an 710129, China
Abstract:
Boiler soot blower can effectively realize the removal of the accumulated ash inside the boiler, improve the operating efficiency of the boiler, which is of great significance to the safe operation of the boilerSPG-type surge soot blower is a new type of high-performance soot blower with a closed-port system which is developed on the basis of the traditional surge soot blowers.The use of numerical methods to validate the feasibility and analyze the working characteristics of this device can provide a reference for the practical application and improvement. Based on CFD technology, the SPG-type surge soot blower is taken as the research object, and the real movement process of the piston inside the device is simulated using dynamic mesh technology, and the dynamic process of continuous change of the flow field inside the SPG-type surge soot blower is simulated and calculated using Fluent software, and the structural parameters of the nozzle, the combustion chamber, and the pressure accumulator are adjusted, so as to obtain the influence law of changes in structural parameters of each component on the exhaust characteristics by monitoring at the outlet. By adjusting the structural parameters of the nozzle, combustion chamber and pressure accumulator, the structural parameters of each component are monitored at the outlet to obtain the influence law of the change on the exhaust characteristics and the working characteristics. The results show that: when the nozzle L/D ratio is increased from 2 to 4, the peak value of the outlet parameter shows a hysteresis phenomenon, but the peak value of the pressure and the peak value of the velocity get a significant increase, and the expansion loss can be reduced by changing the expansion section of the nozzle to a straight one, so it is a better solution to increase the nozzle L/D ratio appropriately and connect the straight pipe directly; the shortening of the spacing between radial and axial wall surfaces of the combustion chamber can increase the peak value of the outlet pressure, but the increase of the peak value of the pressure can be greater by shortening the axial distance. The increase in peak pressure is greater; in the pressure accumulator, removing the damping device increases the pressure less, and cannot slow down the piston reset, so that the discharge gas is reduced, and after removing the restrictor, the nozzle outlet pressure is greatly increased, but its peak duration becomes shorter.
Key words:    SPG shock wave dust collector    internal flow field    peak outlet pressure    numerical simulation   
收稿日期: 2023-03-16     修回日期:
DOI: 10.1051/jnwpu/20244220269
通讯作者: 郑龙席(1970—),教授 e-mail:zhenglx@nwpu.edu.cn     Email:zhenglx@nwpu.edu.cn
作者简介: 王超(1999—),硕士研究生
相关功能
PDF(2784KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王超  在本刊中的所有文章
郑龙席  在本刊中的所有文章
王渤文  在本刊中的所有文章
程悦  在本刊中的所有文章
张军利  在本刊中的所有文章
李勍  在本刊中的所有文章

参考文献:
[1] 程浙武, 童水光, 童哲铭, 等. 工业锅炉数字化设计与数字孪生综述[J]. 浙江大学学报, 2021, 55(8): 1518-1528 CHENG Zhewu, TONG Shuiguang, TONG Zheming, et al. An overview of digital design and digital twin for industrial boilers[J]. Chinese Journal of Zhejiang University, 2021, 55(8): 1518-1528 (in Chinese)
[2] GAO J, MASOSHITA M, HORIGVCHI G, et al. Toward stable operation of sewage sludge incineration plants: the use of alumina nanoparticles to suppress adhesion of fly ash[J]. Energy & Fuels, 2019, 33(9): 9363-9366
[3] 朱予东, 阎维平, 欧宗现. 熵产分析法在锅炉吹灰优化模型中的应用[J]. 中国电机工程学报, 2008(8): 13-17 ZHU Yudong, YAN Weiping, OU Zongxian. Application of entropy yield analysis in boiler soot blowing optimization model[J]. Chinese Journal of Electrical Engineering, 2008(8): 13-17 (in Chinese)
[4] JAMEEL M I, CORMACK D E, TRAN H, et al. Sootblower optimization part 1: fundamental hydrodynamics of a sootblower nozzle and jet[J]. TAPPI Journal, 1994, 77(5): 135-142
[5] KALIAZINE A, CORMACK D E, EBRAHIMI-SABET A, et al. The mechanics of deposit removal in kraft recovery boilers[J]. Journal of Pulp and Paper Science, 1999, 25(12): 418-424
[6] ESLAMIAN M, POPHALI A, BUSSMANN M, et al. Breakup of brittle deposits by supersonic air jet: the effects of varying jet and deposit characteristics[J]. International Journal of Impact Engineering, 2009, 36(2): 199-209
[7] POPHALI A, ESLAMIAN M, KALIAZINE A, et al. Breakup mechanisms of brittle deposits in kraft recovery boilers—a fundamental study[J]. TAPPI Journal, 2009, 8(9): 4-9
[8] 陈隆枢, 陶晖. 袋式除尘技术手册[M]. 北京: 机械工业出版社, 2010: 99-103 CHEN Lonshu, TAO Hui. Handbook of bayhouse dust removal technology[M]. Beijing: Machinery Industry Press, 2010: 99-103 (in Chinese)
[9] 郭策安, 陈明辉, 廖依敏, 等. 模拟燃气热冲击条件下搪瓷基复合涂层的防护机理研究[J]. 金属学报, 2018, 54(12): 1825-1832 GUO Cean, CHEN Minghui, LIAO Yimin, et al. Study on the protection mechanism of enamel-based composite coatings under simulated gas thermal shock conditions[J]. Journal of Metals, 2018, 54(12): 1825-1832 (in Chinese)
[10] 曹义国. 树状管路分布式三管热爆脉冲吹灰器: 中国, CN201225633[P]. 2009-04-22
[11] 陈海军, 魏小林, 吴东垠. 一种利用文丘里混合乙炔和空气的燃气脉冲吹灰器: 中国, CN211316217U[P]. 2020-08-21
[12] 焦志武. 激波吹灰器在250 t/d机械炉排垃圾焚烧余热锅炉的运用[J]. 能源与节能, 2018(3): 76-78 JIAO Zhiwu. The use of a surge soot blower in a 250 t/d mechanical grate waste incineration waste heat boiler[J]. Energy and Energy Efficiency, 2018(3): 76-78 (in Chinese)
[13] 保罗·米勒, 哈拉尔德·赫茨. 用于产生高振幅的压力波的设备和方法: 中国, CN112074897A [P]. 2020-12-11
[14] 陈星谷, 王治武, 郑龙席, 等. 预爆管布置方式对起爆特性影响的数值模拟研究[J]. 西北工业大学学报, 2013, 31(5): 737-741 CHEN Xinggu, WANG Zhiwu, ZHENG Longxi, et al. Numerical simulation study of the effect of pre-blast tube arrangement on detonation characteristics[J]. Journal of Northwestern Polytechnic University, 2013, 31(5): 737-741 (in Chinese)
[15] 张师帅. 计算流体动力学及其应用——CFD软件的原理与应用[M]. 湖北: 华中科技大学出版社, 2011 ZHANG Shishuai. Computational fluid dynamics and its applications-principles and applications of CFD software[M]. Hubei: Huazhong University of Science and Technology Press, 2011 (in Chinese)
[16] 严清华. 球形密闭容器内可燃气体爆炸过程的数值模拟[D]. 大连:大连理工大学, 2004 YAN Qinghua. Numericul sinulation f combustible gas explosion process in shpherical closed ressel[D]. Dalian: Dalian University of Technology, 2004 (in Chinese)
[17] 陈明仙, 郭进, 罗飞云, 等. 点火位置对甲烷-空气预混泄爆容器结构响应影响研究[J]. 西安科技大学学报, 2021, 41(5): 800-807 CHEN Mingxian, GUO Jin, LUO Feiyun, et al. Study on the effect of ignition position on the structural response of methane-air premixed explosion relief vessel[J]. Journal of Xi'an University of Science and Technology, 2021, 41(5): 800-807 (in Chinese)