论文:2024,Vol:42,Issue(2):251-259
引用本文:
阳磊, 陈克安, 吕宁, 田丰华, 张季阳, 刘屹东. 声栅结构信号增强性能及其影响因素研究[J]. 西北工业大学学报
YANG Lei, CHEN Kean, LÜ Ning, TIAN Fenghua, ZHANG Jiyang, LIU Yidong. Performance and influencing factors of acoustic grating based on signal enhancement[J]. Journal of Northwestern Polytechnical University

声栅结构信号增强性能及其影响因素研究
阳磊1, 陈克安1, 吕宁1, 田丰华2, 张季阳1, 刘屹东1
1. 西北工业大学 航海学院, 陕西 西安 710072;
2. 中国船舶集团有限公司第七○五研究所, 陕西 西安 710069
摘要:
对于安装在水下航行器声信号接收段的水听器阵列,在其声障板上覆盖高声阻抗材料(称为信号调节板)是一种能有效提高表面声阻抗并减少信号衰减的措施。相比传统的完全覆盖方式,声栅结构(即周期性地敷设调节板阵列)可以极大地提高接收信号增益,减小接收段的质量。为了深入理解声栅结构信号增强机理,优化声栅结构设计,研究了调节板宽度、调节板厚度、入射角以及结构宽度比等因素对声栅结构信号增强性能的影响。仿真结果表明:斜入射会改变信号比(SR)的对称分布,但不会大幅改变结构的声学性能;调节板越宽、越厚,引起的非镜面散射会更强,声栅结构的信号增强性能就越好。在实际应用中,应合理设计声栅结构几何参数以满足现实环境的多重约束以达到总体性能最优,此外适中的宽度比能获得良好的总体声学性能。
关键词:    信号增强    信号调节板    有限空间    声栅    轻量化    声聚焦   
Performance and influencing factors of acoustic grating based on signal enhancement
YANG Lei1, CHEN Kean1, LÜ Ning1, TIAN Fenghua2, ZHANG Jiyang1, LIU Yidong1
1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China;
2. No.705 Research Institute of China State Shipbuilding Corporation Limited, Xi'an 710069, China
Abstract:
In the acoustic signal receiving section of underwater vehicle, an effective measure to improve surface acoustic impedance and reduce signal attenuation is to cover acoustic barrier plate of hydrophone array with high impedance material (signal conditioning plate). Compared with traditional full coverage mode, an acoustic grating (periodic installation of regulator plate array) can greatly improve the received signal gain and reduce the weight of the receiving segment. In order to deeply understand the signal enhancement mechanism and optimize the design of acoustic grating, the factors that influence the signal enhancement performance of acoustic grating from the aspects of width, thickness, incident angle and structure width ratio is studied. Simulation results show that the oblique incidence will change the symmetrical distribution of signal ratio (SR), but will not significantly change the acoustic performance of the structure. Wider and thicker regulating plate lead to stronger non-mirror scattering and better signal enhancement performance of structure. In practical application, geometric parameters of acoustic grating should be reasonably designed to meet multiple constraints of real environment to achieve optimal overall performance. In addition, the moderate width ratio can obtain a good overall acoustic performance.
Key words:    signal enhancement    signal conditioning plate    limited space    acoustic grating    lightweight    acoustic focusing   
收稿日期: 2023-02-14     修回日期:
DOI: 10.1051/jnwpu/20244220251
通讯作者: 陈克安(1965—),教授 e-mail:kachen@nwpu.edu.cn     Email:kachen@nwpu.edu.cn
作者简介: 阳磊(1999—),硕士研究生
相关功能
PDF(4128KB) Free
打印本文
把本文推荐给朋友
作者相关文章
阳磊  在本刊中的所有文章
陈克安  在本刊中的所有文章
吕宁  在本刊中的所有文章
田丰华  在本刊中的所有文章
张季阳  在本刊中的所有文章
刘屹东  在本刊中的所有文章

参考文献:
[1] KO S H, PYO S, SEONG W. Structure-borne and flow noise reductions(mathematical modeling)[M]. Korea: Seoul National University Press, 2001: 34-98
[2] SHERMAN C, BUTLER J. Transducers and arrays for underwater sound[M]. New York: Springer, 2007: 289-291
[3] 张怡珺. 圆柱阵布阵技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2017: 46-47 ZHANG Yijun. The study of cylindrical array layout technology[D]. Harbin: Harbin Engineering University, 2017: 46-47 (in Chinese)
[4] 边汉林, 夏铁坚. 一种圆柱通道型橡胶反声障板的研究[J]. 声学与电子工程, 2014(1): 31-33 BIAN Hanlin, XIA Tiejian. The study of a cylindrical channel type rubber acoustic baffle[J]. Acoustics and Electronics Engineering, 2014(1): 31-33 (in Chinese)
[5] ZHANG Y, PAN J. Underwater sound scattering and absorption by a coated infinite plate with a distributed inhomogeneity[J]. Journal of the Acoustical Society of America, 2013(133): 2082-2096
[6] ZHANG Y, PAN J. Enhancing acoustic signal response and absorption of an underwater coated plate by embedding periodical inhomogeneities[J]. Journal of the Acoustical Society of America, 2017,142(6): 3722-3735
[7] FEIT D, CUSCHIERI J M. Scattering of sound by a fluid-loaded plate with a distributed mass inhomogeneity[J]. Journal of the Acoustical Society of America, 1996, 99(5): 2686-2700
[8] CUSCHIERI J M, FEIT D. Full numerical solution for the far-field and near-field scattering from a fluid-loaded elastic plate with distributed mass or stiffness inhomogeneity[J]. Journal of the Acoustical Society of America, 1998, 104(2): 915-925
[9] SMITH S G, CRASTER R V. Numerical and asymptotic approaches to scattering problems involving finite elastic plates in structural acoustics[J]. Wave Motion, 1999(30): 17-41
[10] GUO Y P. Effects of structural joints on sound scattering[J]. Journal of the Acoustical Society of America, 1993(93): 857-863
[11] 王海军, 郭杏林. 板结构的吻合频率和临界频率特性研究[C]//第17届全国结构工程学术会议, 2008: 570-575 WANG Haijun, GUO Xinglin. The study of coincidence frequency and critical frequency characteristics of plate structures[C]//Proceedings of the 17th National Conference on Structural Engineering, 2008: 570-575
[12] POSTNOVA J, CRASTER R V. Trapped modes in topographically varying elastic waveguides[J]. Wave Motion, 2007, 44(3): 205-221
[13] ZHANG Y, PAN J. Underwater sound radiation from an elastically coated plate with a discontinuity introduced by a signal conditioning plate[J]. Journal of the Acoustical Society of America, 2013(133): 173-185