论文:2024,Vol:42,Issue(2):241-250
引用本文:
叶博, 杨佑绪, 卢嘉成, 余灵富, 成志勇. 带扩口折叠翼尖的大展弦比机翼气动弹性研究[J]. 西北工业大学学报
YE Bo, YANG Youxu, LU Jiacheng, YU Lingfu, CHENG Zhiyong. Aeroelasticity study of high span ratio wing with flare folding wingtip[J]. Journal of Northwestern Polytechnical University

带扩口折叠翼尖的大展弦比机翼气动弹性研究
叶博1, 杨佑绪1, 卢嘉成2, 余灵富1, 成志勇1
1. 南昌航空大学 飞行器工程学院, 江西 南昌 330063;
2. 陆军装备部驻南京地区第三军事代表室, 江苏 南京 210000
摘要:
扩口折叠翼尖依靠结构的自适应变形来降低飞行载荷,能有效简化控制系统,在成本和质量上更有优势。为研究弹性折叠翼尖作为被动载荷减缓装置的效果,使用铰链将翼尖连接到机翼并赋予一定弹性,对不同的折叠翼尖参数构型进行了静、动载荷响应以及颤振分析,研究了铰链方向、刚度、翼尖质量与翼尖重心位置对载荷响应与颤振特性的影响。结果表明,扩口折叠翼尖在合适的参数下能够显著降低机翼的静载荷与突风载荷,在静气动弹性配平分析中,折叠翼尖可以使展长增加25%而几乎不增加翼根弯矩,并使配平攻角降低了0.14°。在突风响应分析中可使最大翼根弯矩相比于固定翼尖减少近50%,仅比不带翼尖的基准模型高17%。但颤振速度有所降低,需进一步优化以改善其颤振特性。
关键词:    飞行载荷    突风响应    折叠翼尖    突风减缓    颤振   
Aeroelasticity study of high span ratio wing with flare folding wingtip
YE Bo1, YANG Youxu1, LU Jiacheng2, YU Lingfu1, CHENG Zhiyong1
1. School of Flight Vehicle and Engineering, Nanchang Hangkong University, Nanchang 330063, China;
2. The Third Military Representative Office of Army Equipment Department in Nanjing, Nanjing 210000, China
Abstract:
Flare folding wing-tips rely on the adaptive deformation of the structure to reduce the flight load, which can effectively simplify the control system, and has more advantages in cost and weight. To study the effect of the elastic folding wingtip as a passive load alleviation device, the flexible hinges were used to connect the folding wingtip to the wing, and the Doublet Lattice panel method was used to calculate the aerodynamic loads. Static and dynamic load response and flutter analysis were performed on the folding wingtip configurations with different structural parameters, and the effects of the hinge orientation, stiffness, wingtip weight and wingtip center of gravity position on the load response and flutter behavior were investigated. The results show that the flare folding wingtip can significantly reduce the static and sudden wind loads of the wing with suitable parameters. In the static aeroelastic trim analysis, the folding wingtip can increase the span length by 25% with almost no increase in the wing root bending moment and reduce the trim angle of attack by 0.14°. In the gust response analysis, the maximum wing root bending moment can be reduced by nearly 50% comparing with the fixed wing tip, which is only 17% higher than the baseline model without the wing tip. However, the flutter velocity is reduced, and further optimization is needed to improve the flutter characteristics.
Key words:    flight loads    gust response    folding wing tips    gust load alleviation    flutter   
收稿日期: 2023-01-17     修回日期:
DOI: 10.1051/jnwpu/20244220241
通讯作者: 杨佑绪(1983—),副教授 e-mail:zgdy_1@163.com     Email:zgdy_1@163.com
作者简介: 叶博(1996—),硕士研究生
相关功能
PDF(4837KB) Free
打印本文
把本文推荐给朋友
作者相关文章
叶博  在本刊中的所有文章
杨佑绪  在本刊中的所有文章
卢嘉成  在本刊中的所有文章
余灵富  在本刊中的所有文章
成志勇  在本刊中的所有文章

参考文献:
[1] 向锦武, 阚梓, 邵浩原, 等. 长航时无人机关键技术研究进展[J]. 哈尔滨工业大学学报, 2020, 52(6): 57-77 XIANG Jinwu, KAN Zi, SHAO Haoyuan, et al. A review of key technologies for long-endurance unmanned aerial vehicle[J]. Journal of Harbin Institute of Technology, 2020, 52(6): 57-77 (in Chinese)
[2] 陈迎春, 张美红, 张淼, 等. 大型客机气动设计综述[J]. 航空学报, 2019, 40(1): 35-51 CHEN Yingchun, ZHANG Meihong, ZHANG Miao, et al. Review of large civil aircraft aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 35-51 (in Chinese)
[3] 杨超, 邱祈生, 周宜涛, 等. 飞机突风响应减缓技术综述[J]. 航空学报, 2022, 43(10): 216-256 YANG Chao, QIU Qisheng, ZHOU Yitao, et al. Review of aircraft gust response mitigation techniques[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 216-256 (in Chinese)
[4] AJAJ R M, PARANCHEERIVILAKKATHIL M S, AMOOZGAR M R, et al. Recent developments in the aeroelasticity of morphing aircraft[J]. Progress in Aerospace Sciences, 2020, 120(10): 682-702
[5] SIDDARAMAIAH V H. Preliminary studies in the use of folding wing-tips for loads alleviation[C]//Applied Aerodynamics Conference, 2014
[6] CASTRICHINI A, HODIGERE S V, CALDERON D E, et al. Preliminary investigation of use of flexible folding wing-tips for static and dynamic loads alleviation[C]//4th RAES Aircraft Structural Design Conference, 2014
[7] CASTRICHINI A, COOPER J E, WILSON T, et al. Nonlinear negative stiffness wingtip spring device for gust loads alleviation[J]. Journal of Aircraft, 2017, 54(2): 368-383
[8] AJAJ R M. Flight dynamics of transport aircraft equipped with flared-hinge folding wingtips[J]. Journal of Aircraft, 2020, 58(1): 213-224
[9] VALENTE C, CASTRICHINI A, WILSON T, et al. High fidelity CFD/CSM analysis of a folding wing-tip device for aircraft loads alleviation[C]//6th Aircraft Structural Design Conference, 2018
[10] CHEUNG R C M, REZGUI D, COOPER J E, et al. Testing of a hinged wingtip device for gust loads alleviation[J]. Journal of Aircraft, 2018, 55(5): 2050-2067
[11] THOMAS W, JAMES K, JOHN H, et al. Small scale flying demonstration of semi aeroelastic hinged wing tip[C]//18th International Forum on Aeroelasticity and Structural Dynamics, Savannah, 2019
[12] 杨宁, 吴志刚, 杨超, 等. 折叠翼的结构非线性颤振分析[J]. 工程力学, 2012, 29(2): 197-204 YANG Ning, WU Zhigang, YANG Chao, et al. Flutter analysis of a folding wing with structural nonlinearity[J]. Engineering Mechanics, 2012,29(2): 197-204 (in Chinese)
[13] 徐浩, 韩景龙, 奚勇, 等. 折叠翼飞行器气动弹性变体飞行仿真平台[J/OL]. (2022-11-23)[2023-01-05].http://kns.cnki.net/kcms/detail/11.2625.V.20221103.1727.004.html XU Hao, HAN Jinlong, XI Yong, et al. Aeroelastic morphing flight simulation platform for folding wing[J/OL]. (2022-11-23)[2023-01-05]. http://kns.cnki.net/kcms/detail/11.2625.V.20221103.1727.004.html (in Chinese)
[14] 詹玖榆, 周兴华, 黄锐. 基于流形切空间插值的折叠翼参数化气动弹性建模[J]. 力学学报, 2021, 53(4): 1103-1113 ZHAN Jiuyu, ZHOU Xinghua, HUANG Rui. Parametric aeroelastic modeling of folding wing based on manifold tangent space interpolation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1103-1113 (in Chinese)
[15] 刘湘一, 阎永举, 文柏衡, 等. 柔性机翼突风响应与被动减缓研究[J]. 海军航空工程学院学报, 2016, 31(6): 635-640 LIU Xiangyi, YAN Yongju, WEN Baiheng, et al. Research on gust response and passive alleviation of flexible wing[J]. Journal of Naval Aviation University, 2016,31(6): 635-640 (in Chinese)
[16] 肖伶. 折叠翼尖部分动力学等效方法与气动弹性研究[D]. 大连: 大连理工大学, 2021: 59-66 XIAO Ling. The method of partial dynamic equivalence and aeroelasticity research in folding wing tip[D]. Dalian: Dalian University of Technology, 2021: 59-66 (in Chinese)
[17] 万志强, 唐长红, 邹丛青. 柔性复合材料前掠翼飞机静气动弹性分析[J]. 复合材料学报, 2002(5): 118-124 WAN Zhiqiang, TANG Changhong, ZOU Congqing. Static aeroelastic characteristics analysis of a flexible forward swept composite aircraft[J]. Acta Materiae Compositae Sinica, 2002(5): 118-124 (in chinese)
[18] RODDEN W P, JOHNSON E H. MSC/Nastran aeroelastic analtsis user's guide V68[M]. Log Angeles: MSC Coporation, 1994
[19] FULLER J R. Evolution and future development of airplane gust loads design requirements[C]//World Aviation Congress, 1997
[20] MASTRACCI P, SALTARI F, MASTRODDI F, et al. Unsteady aeroelastic analysis of the semi aeroelastic hinge including local geometric nonlinearities[J]. AIAA Journal, 2022, 60(5): 3147-3165