论文:2024,Vol:42,Issue(2):222-231
引用本文:
冯蕴雯, 唐家强, 薛小锋, 李帅, 陈先民. 考虑磨损演化的铰链式襟翼机构动力学仿真研究[J]. 西北工业大学学报
FENG Yunwen, TANG Jiaqiang, XUE Xiaofeng, LI Shuai, CHEN Xianmin. Study on dynamic simulation of hinged flap mechanism considering wear evolution[J]. Journal of Northwestern Polytechnical University

考虑磨损演化的铰链式襟翼机构动力学仿真研究
冯蕴雯1, 唐家强1, 薛小锋1, 李帅1, 陈先民2,3
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 中国飞机强度研究所, 陕西 西安 710065;
3. 中国飞机强度研究所 强度与结构完整性全国重点实验室, 陕西 西安 710065
摘要:
不同卡位的襟翼气动载荷差别很大,使得轴承在不同襟翼偏角下所承受载荷也存在明显差异,这导致在不同角度位置的轴承磨损深度不一致。因此,引入均匀磨损深度的方法难以适用于襟翼的动力学特性分析。为解决这一问题,提出了一种基于最小二乘法的动力学建模方法。根据襟翼翼面的连接特点利用C-B法对其进行柔性化,并采用RBE2单元建立刚柔耦合动力学模型。联合UAMP、DISP、UMESHMOTION子程序进行磨损演化仿真,获取铰链轴承的非均匀磨损数据,同时通过最小二乘拟合建立磨损深度和襟翼偏角角度以及摩擦因数的映射关系。将该映射关系以铰链轴承中心点的偏移量和轴承摩擦因数的方式更新刚柔耦合动力学模型,以获取在磨损影响下的襟翼机构动力学响应,验证了方法的适用性和有效性。结果表明,随着磨损的进行,襟翼内外侧轴承转轴同轴度逐渐降低,内外侧驱动力矩随之增加,增加幅度最大为15.08%。该方法可为襟翼机构的设计及轴承选型提供一定支持。
关键词:    襟翼机构    动力学    刚柔耦合    磨损演化    最小二乘   
Study on dynamic simulation of hinged flap mechanism considering wear evolution
FENG Yunwen1, TANG Jiaqiang1, XUE Xiaofeng1, LI Shuai1, CHEN Xianmin2,3
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Aircraft Strength Research Institute of China, Xi'an 710065, China;
3. National Key Laboratory of Strength and Structural Integrity, Aircraft Strength Research Institute of China, Xi'an 710065, China
Abstract:
Due to the significant differences in aerodynamic loads offlaps at different positions, there are also significant differences in the loads borne by bearings at different flap angles. This leads to inconsistent wear depth of bearings at different angles. Therefore, the method of introducing uniform wear depth is difficult to apply to the dynamic characteristics analysis of flaps. To address this issue, a dynamic modeling method based on the least squares method is proposed. Firstly, based on the connection characteristics of the flap surface, the C-B method is used to make it flexible, and the RBE2 element is used to establish a rigid flexible coupling dynamic model. On this basis, combining with UAMP, DISP and UMESHMOTION subroutines, the uneven wear data of hinge bearings are obtained by using the wear evolution simulation. At the same time, the function relation among the wear depth, flap deflection angle, and friction coefficient is established via least squares fitting. Finally, the function relation is updated to the rigid-flexible coupling dynamic model by the offset of the hinge bearing center point and the friction coefficient of the ball pair, so as to obtain the dynamic response of the flap under the influence of wear, which verifies the applicability and effectiveness of the method. As wear progresses, the coaxiality of the inner and outer bearing shafts of the flaps decreases gradually, and the driving torque on the inner and outer sides increases accordingly. The maximum increase is 15.08%. This method can provide some support for designing the flap mechanism and bearing selection.
Key words:    flap mechanism    dynamics    rigid-flexible coupling    wear evolution    least squares   
收稿日期: 2023-04-19     修回日期:
DOI: 10.1051/jnwpu/20244220222
通讯作者: 冯蕴雯(1968—) e-mail:fengyunwen@nwpu.edu.cn     Email:fengyunwen@nwpu.edu.cn
作者简介: 冯蕴雯(1968—),教授
相关功能
PDF(4078KB) Free
打印本文
把本文推荐给朋友
作者相关文章
冯蕴雯  在本刊中的所有文章
唐家强  在本刊中的所有文章
薛小锋  在本刊中的所有文章
李帅  在本刊中的所有文章
陈先民  在本刊中的所有文章

参考文献:
[1] HOOGENDIJK A R. Knowledge engineering in high lift design: the ICAD flap kinematic tool[D]. Delft: Delft University of Technology, 2004
[2] ZACCAI D. Design framework for trailing edge high-lift systems: a knowledge based engineering application[D]. Delft: Delft University of Technology, 2014
[3] RECKSIEK M. Advanced high lift system architecture with distributed electrical flap actuation[C]//Aviation System Technology Workshop, 2009
[4] SCHOLZ P, MAHMOOD S, CASPER M, et al. Design of active flow control at a drooped spoiler configuration[R]. AIAA-2013-2518, 2013
[5] JIE Z, SUN Z, SONG Q. Analysis of flap mechanism reliability[C]//International Conference on Mechatronics Engineering & Information Technology, 2017
[6] 张雷, 冯蕴雯, 薛小锋, 等. 直滑轨式襟翼运动机构可靠性分析[J]. 机械科学与技术, 2012, 31(7): 1189-1191 ZHANG Lei, FENG Yunweng, XUE Xiaofeng, et al. Reliability analysis of straight track flap movement mechanism[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(7): 1189-1191 (in Chinese)
[7] 喻天翔, 庄新臣, 宋笔锋, 等. 飞机连杆机构多铰链磨损寿命综合预测方法[J]. 航空学报, 2022, 43(8): 133-142 YU Tianxiang, ZHUANG Xinchen, SONG Bifeng, et al. Integrated wear life prediction method of multiple joints in an aircraft linkage mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 133-142 (in Chinese)
[8] 冯蕴雯, 何智宇, 唐家强, 等. 民用飞机顺气流襟翼机构故障工况动力学仿真研究[J]. 航空工程进展, 2023, 14(4): 85-93 FENG Yunweng, HE Zhiyu, TANG Jiaqiang, et al. Dynamics simulation research on fault conditions of deflecting to airflow flap mechanism of civil aircraft[J]. Advances in Aeronautical Science and Engineering, 2023, 14(4): 85-93 (in Chinese)
[9] 钟云龙, 张钟文, 张大鹏, 等. 基于失效模式的襟翼运动机构可靠性仿真分析[J]. 电子产品可靠性与环境试验, 2019, 37(5): 1-7 ZHONG Yunlong, ZHANG Zhongwen, ZHANG Dapeng, et al. Reliability simulation analysis of a flap motion mechanism based on failure modes[J]. Electronic Product Reliability and Environmental Testing, 2019, 37(5): 1-7 (in Chinese)
[10] FENG Y W, HE Z Y, XUE X F, et al. Dynamic simulation of complex multi-hinge space flap mechanism[C]//The 12th Asia Conference on Mechanical and Aerospace Engineering, 2022
[11] ZHOU J, SUN Z,SONG Q. Analysis of flap mechanism reliability[C]//Proceedings of the 2nd International Conference on Mechatronics Engineering and Information Technology, 2017
[12] MUKRAS S, KIM N H, MAUNTLER N A, et al. Analysis of planar multibody systems with revolute jointwear[J]. Wear, 2010, 268(5/6): 643-652
[13] GENG X Y, LI M, LIU Y F, et al. Non-probabilistic kinematic reliability analysis of planar mechanisms with non-uniform revolute clearance joints[J]. Mechanism and Machine Theory, 2019, 140: 413-433
[14] 朱爱斌, 何胜利, 邹超. 考虑接触刚度的含间隙铰接副动态磨损分析[J]. 西安交通大学学报, 2016, 50(5): 12-18 ZHU Aibin, HE Shengli, ZOU Chao, et al. Dynamic wear analysis of clearance joint considering contact stiffness[J]. Journal of Xi'an Jiaotong University, 2016, 50(5): 12-18 (in Chinese)
[15] LAI X M, HE H, LAI Q F, et al. Computational prediction and experimental validation of revolute joint clearance wear in the low-velocity planar mechanism[J]. Mechanical Systems and Signal Processing, 2017, 85: 963-976
[16] 方鑫. 关节轴承协调接触模型与磨损寿命预测[D]. 长沙:国防科学技术大学, 2014: 14-31 FANG Xin. Conformal contact model and wear life prediction for spherical plain bearings[D]. Changsha: National University of Defense Technology, 2014: 14-31 (in Chinese)
[17] 刘尧. 基于分形理论的关节轴承微观接触模型与寿命预测研究[D]. 长沙:国防科学技术大学, 2016: 26-45 LIU Yao. A new microcontact model of conformal contact and wear life prediction for spherical plain bearings based on fractal theory[D]. Changsha: National University of Defense Technology, 2016: 26-45 (in Chinese)
[18] 袁军亚, 杨明明, 李佩隆, 等. 自润滑关节轴承用织物衬垫摩擦学研究进展[J]. 摩擦学学报, 2021, 41(2): 280-292 YUAN Junya, YANG Mingming, LI Peilong, et al. Progress research on the tribology of fabric liner for self-lubricating joint bearings[J]. Tribology, 2021, 41(2): 280-292 (in Chinese)
[19] 张青林. 基于刚柔耦合的整车动力学仿真及悬架参数优化[D]. 重庆:重庆理工大学, 2015 ZHANG Qinglin. Simulation of vehicle dynamics and optimization of suspension parameters based on rigid-flexible coupling model[D]. Chongqing: Chongqing University of Technology, 2015 (in Chinese)
[20] 梁力, 纪小飞, 孟兆康, 等. 基于刚柔耦合动力学仿真的起落架舱门优化[J]. 复合材料科学与工程, 2021(6): 45-51 LIANG Li, JI Xiaofei, MENG Zhaokang, et al. Optimization of landing gear door based on rigid-flexible coupling dynamic simulation[J]. Composites Science and Engineering, 2021(6): 45-51 (in Chinese)
[21] FLORES P. Modeling and simulation of wear in revolute clearance joints in multibody systems[J]. Mechanism and Machine Theory, 2009, 44(6): 1211-1222
[22] WANG G X, LIU H Z. Dynamic analysis and wear prediction of planar five-bar mechanism considering multi-flexible links and multi-clearance joints[J]. Journal of Tribology, 2017, 139(5): 051606
[23] ZHU A B, HE S L, ZOU C, et al. The effect analysis of contact stiffness on wear of clearance joint[J]. Journal of Tribology, 2017, 139(3): 031403
[24] BORISENKO V, LEORO J, DIDENKO A. Main rotor blade modeling approaches comparison[C]//International Conference on Information Technologies and Mathematical Modelling, 2021
[25] 汪选国, 严新平, 李涛生, 等. 磨损数值仿真技术的研究进展[J]. 摩擦学学报, 2004(2): 188-192 WANG Xuanguo, YAN Xinping, LI Taosheng, et al. Research status of wear numerical simulation technology[J]. Tribology, 2004(2): 188-192 (in Chinese)
[26] KIM N H, WON D, BURRIS D, et al. Finite element analysis and experiments of metal/metal wear in oscillatory contacts[J]. Wear, 2005, 258: 1787-1793
[27] 李静, 尹俊. 自润滑轴承磨损行为的数值仿真[J]. 润滑与密封, 2018, 43(11): 120-124 LI Jing, YIN Jun. On the wear simulation of self-lubrication bearings[J]. Lubrication Engineering, 2018, 43(11): 120-124 (in Chinese)
[28] 卢建军, 邱明, 李迎春. 自润滑向心关节轴承磨损寿命模型[J]. 机械工程学报, 2015, 51(11): 56-63 LU Jianjun, QIU Ming, LI Yingchun. Wear life model for self-lubricating radial spherical plain bearings[J]. Journal of Mechanical Engineering, 2015, 51(11): 56-63 (in Chinese)
[29] YU Ruifeng, DIAO Binbin, GAO Deli. A calculation model for improving the relative borehole uncertainty based on the least square method in relief well[J]. Journal of Petroleum Science and Engineering, 2022, 217: 70-76
[30] 杨雨钱. 民机典型零部件性能退化规律及可靠性建模分析研究[D]. 西安:西北工业大学, 2015: 67-69 YANG Yuqian. Research on performance degradation law and reliability modeling of typical components of civil aircraft[D]. Xi'an: Northwestern Polytechnical University, 2015: 67-69 (in Chinese)