论文:2024,Vol:42,Issue(1):138-148
引用本文:
魏琼, 陆浩, 吴子龙, 白林勇, 张道德, 李奕. 基于刚度可调的气动位置伺服系统摩擦补偿控制[J]. 西北工业大学学报
WEI Qiong, LU Hao, WU Zilong, BAI Linyong, ZHANG Daode, LI Yi. Friction compensation control of pneumatic position servo system based on the adjustable stiffness[J]. Journal of Northwestern Polytechnical University

基于刚度可调的气动位置伺服系统摩擦补偿控制
魏琼, 陆浩, 吴子龙, 白林勇, 张道德, 李奕
湖北工业大学 机械工程学院, 湖北 武汉 430068
摘要:
气动伺服系统的低刚度、低气源压强、流量易饱和等特性,导致系统在工作过程中能量耗散较大,系统易受摩擦影响,且补偿效果不明显。尤其是当系统的运动方向改变时,会产生明显的"平顶现象",严重影响气动伺服系统的跟踪精度。采用负载口独立控制结构,消除因两腔耦合而导致的能量耗散,使系统流量特性尽可能地位于线性区间;针对气动系统中存在的摩擦中部分参数不确定,以及外界干扰、动态负载的不确定性,设计非线性自适应鲁棒控制方法;将系统的刚度调节与自适应鲁棒控制进行协同控制,提高气动位置伺服系统的动态性能。仿真和实验结果均表明:具有刚度调节的自适应鲁棒控制能够明显降低系统能量耗散,提高系统位置跟踪精度,有效改善摩擦引起的"平顶现象"。
关键词:    摩擦补偿    气动位置伺服    刚度调节    负载口独立控制   
Friction compensation control of pneumatic position servo system based on the adjustable stiffness
WEI Qiong, LU Hao, WU Zilong, BAI Linyong, ZHANG Daode, LI Yi
School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
Abstract:
Due to the characteristics of low stiffness, low air source pressure, and easy fluid saturation of the pneumatic servo system, the energy dissipation of the system during the working process is large, the system is easily affected by friction, and the compensation effect is not obvious. Especially, the "Flat roof phenomenon" will become stronger when changing the speed direction. It seriously affects the tracking accuracy of the pneumatic servo system. In this paper, the independent metering valve control structure is proposed to eliminate the energy dissipation caused by the coupling of two chambers, so that the air fluid characteristics are within the linear range as far as possible. The nonlinear adaptive robust control method is designed for the uncertainty of some parameters in the friction, external disturbances, and dynamic loads in the pneumatic system. At the same time, the stiffness adjustment and adaptive robust control of the system are coordinated to improve the dynamic performance of the pneumatic position servo system. The simulation and experimental results show that the adaptive robust controller with stiffness adjustment can effectively reduce the energy dissipation of the system, improve the position tracking accuracy of the system, and weaken the "Flat roof phenomenon" caused by friction.
Key words:    friction compensation    pneumatic position servo    stiffness control    load port independent control   
收稿日期: 2023-01-05     修回日期:
DOI: 10.1051/jnwpu/20244210138
基金项目: 国家自然科学基金(51905159,52075152)资助
通讯作者: 魏琼(1980-) e-mail:20140058@hbut.edu.cn     Email:20140058@hbut.edu.cn
作者简介: 魏琼(1980-),副教授
相关功能
PDF(3812KB) Free
打印本文
把本文推荐给朋友
作者相关文章
魏琼  在本刊中的所有文章
陆浩  在本刊中的所有文章
吴子龙  在本刊中的所有文章
白林勇  在本刊中的所有文章
张道德  在本刊中的所有文章
李奕  在本刊中的所有文章

参考文献:
[1] WANG Weiping, MENG Deyuan. Output feedback motion control of pneumatic servo systems withdesired compensation approach[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(10): 235-243
[2] HO C M, TRAN D T, AHN K K. Adaptive sliding mode control based nonlinear disturbance observer for active suspension with pneumatic spring[J]. Journal of Sound and Vibration, 2021, 509: 116241
[3] AZAHAR M I P, IRAWAN A, ISMAIL R M T R. Self-tuning hybrid fuzzy sliding surface control for pneumatic servo system positioning[J]. Control Engineering Practice, 2021, 113(6): 1-20
[4] 姜仁华, 刘闯, 宁银行. 雷达伺服系统的自适应摩擦力矩补偿控制策略[J]. 机械工程学报, 2019, 55(18): 187-195 JIANG Renhua, LIU Chuang, NING Yinhang. Adaptive friction torque compensation control strategy for radar servo system[J]. Chinese Journal of Mechanical Engineering, 2019, 55(18): 187-195(in Chinese)
[5] 赵建博. 基于模型参考鲁棒自适应的摩擦焊相位控制方法研究[D]. 镇江:江苏科技大学,2019 ZHAO Jianbo. Research on phase control method of friction welding based on model reference robust adaptive[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019(in Chinese)
[6] NGUYEN Thuy-Duong, PHAM Van-Hung. Study of the effects of relative humidity and velocity on the friction characteristics of pneumatic cylinders[J]. International Journal of Modern Physics B, 2020, 34: 22-24
[7] MELISSA Schluter, EDUARDO Andre Perondi. Mathematical modeling with friction of a SCARA robot driven by pneumatic semi-rotary actuators[J]. IEEE Latin America Transactions,2020,18(6): 1066-1076
[8] ZENG P F, JIANG G D, ZOU C, et al. Nonlinear friction compensation of a flexible robotic joint with harmonic drive[C]//International Conference on Mechatronics Technology, 2017: 39-44
[9] 崔博. 基于柔性结构的精密直驱工作台预滑动摩擦抑制方法研究[D]. 西安:西安理工大学, 2019 CUI Bo. Research on pre-sliding friction suppression method of precision direct drive table based on flexible structure[D]. Xi'an: Xi'an University of Technology, 2019(in Chinese)
[10] LU Yongjie, ZHANG Juning, YANG Shaopu, et al. Study on improvement of LuGre dynamical model and its application in vehicle handling dynamics[J]. Journal of Mechanical Science and Technology, 2019, 33(2): 545-558
[11] 曾富城. 气动式机器人力控制装置研究[D]. 广州:广东工业大学, 2019 ZENG Fucheng. Research on pneumatic robot force control device[D]. Guangzhou: Guangdong University of Technology, 2019(in Chinese)
[12] ZHANG Yeming, LI Kaimin, XU Meng, et al. Medical grabbing servo system with friction compensation based on the differential evolution algorithm[J]. Chinese Journal of Mechanical Engineering, 2021, 34(1): 1-15
[13] TRAN X B. Nonlinear control of a pneumatic actuator based on a dynamic friction model[J]. Journal of Mechanical Engineering, 2021, 67(9): 458-472
[14] 高鹏, 赵现朝, 李乾坤, 等. 基于LuGre模型的二自由度摆头摩擦补偿[J]. 机械设计与研究, 2021, 37(1): 41-46 GAO Peng, ZHAO Xianchao, LI Qiankun, et al. Friction compensation of two-degree-of-freedom swing head based on LuGre model[J]. Mechanical Design and Research, 2021, 37(1): 41-46(in Chinese)
[15] 魏琼, 焦宗夏, 王君, 等. 基于LuGre模型的气动位置伺服系统摩擦补偿控制[J]. 机械工程学报, 2018, 54(20): 131-138 WEI Qiong, JIAO Zongxia, WANG Jun, et al. Friction compensation control of pneumatic position servo system based on LuGre model[J]. Chinese Journal of Mechanical Engineering, 2018, 54(20): 131-138(in Chinese)
[16] 姚来鹏, 侯保林, 刘曦. 采用摩擦补偿的弹药传输机械臂自适应终端滑模控制[J]. 上海交通大学学报, 2020, 54(2): 144-151 YAO Laipeng, HOU Baolin, LIU Xi. Adaptive terminal sliding mode control of ammunition transmission manipulator using friction compensation[J]. Journal of Shanghai Jiaotong University, 2020, 54(2): 144-151(in Chinese)
[17] 李顺利, 孟德远, 杨林, 等. 气动肌肉驱动关节轨迹跟踪的自适应鲁棒控制[J]. 哈尔滨工业大学学报, 2021, 53(7): 134-143 LI Shunli, MENG Deyuan, YANG Lin, et al. Adaptive robust control for trajectory tracking of pneumatic muscle driven joints[J]. Journal of Harbin Institute of Technology, 2021, 53(7): 134-143(in Chinese)
[18] 孟德远, 陶国良, 李艾民, 等. 高速开关阀控气动位置伺服系统的自适应鲁棒控制[J]. 机械工程学报, 2015, 51(10): 180-188 MENG Deyuan, TAO Guoliang, LI Aimin, et al. Adaptive robust control of high-speed on-off valve-controlled pneumatic position servo system[J]. Chinese Journal of Mechanical Engineering, 2015, 51(10): 180-188(in Chinese)
[19] ZHANG Haiyun, MENG Deyuan, WANG Jin, et al. Indirect adaptive fuzzy-regulated optimal control for unknown continuous-time nonlinear systems[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(2): 155-169
[20] 牛善帅, 王军政, 张鹏, 等. 基于负载口独立控制的双伺服阀控缸系统[J]. 北京理工大学学报, 2019, 39(12): 1292-1297 NIU Shanshuai, WANG Junzheng, ZHANG Peng, et al. Dual-servo valve-controlled cylinder systembased on independent control of load ports[J]. Journal of Beijing Institute of Technology, 2019,39(12): 1292-1297(in Chinese)
[21] WANG Di, WANG Junzheng, WANG Shoukun. A new pressure control method in the system with separate control of actuator ports[C]//Proceedings of the 20156th International Conference on Manufacturing Science and Engineering, 2015
[22] 曾亿山, 黄河, 刘常海, 等. 基于回油补偿的负载口独立系统节能特性分析[J]. 机床与液压, 2022, 50(13): 1-6 ZENG Yishan, HUANG He, LIU Changhai, et al. Analysis of energy-saving characteristics of load port independent system based on oil return compensation[J]. Machine Tools and Hydraulics, 2022, 50(13): 1-6(in Chinese)
[23] 蔡茂林. 现代气动技术理论与实践第一讲:气动元件的流量特性[J]. 液压气动与密封, 2007(2): 44-48 CAI Maolin. Theory and practice of modern pneumatic technology lecture 1: flow characteristics of pneumatic components[J]. Hydraulic Pneumatics and Sealing, 2007(2): 44-48(in Chinese)