论文:2024,Vol:42,Issue(1):98-107
引用本文:
唐婧媛, 苟永杰, 马洋洋, 泮斌峰. 火箭着陆制导的二阶皮卡切比雪夫牛顿类方法[J]. 西北工业大学学报
TANG Jingyuan, GOU Yongjie, MA Yangyang, PAN Binfeng. Rocket landing guidance based on second-order Picard-Chebyshev-Newton type algorithm[J]. Journal of Northwestern Polytechnical University

火箭着陆制导的二阶皮卡切比雪夫牛顿类方法
唐婧媛1, 苟永杰2, 马洋洋1, 泮斌峰1
1. 西北工业大学 航天学院, 陕西 西安 710072;
2. 上海宇航系统工程研究所, 上海 201108
摘要:
针对火箭一子级着陆问题,提出一种基于二阶皮卡-切比雪夫-牛顿类算法的制导方法。基于动力学方程的自然二阶皮卡迭代格式及切比雪夫多项式,将连续时间动力学方程进行离散化处理;将考虑终端约束的着陆问题转化为关于终端约束函数的非线性最小二乘问题,并采用高斯-牛顿方法求解该问题;在此基础上,在高斯-牛顿法的迭代过程中引入投影方法,实现推力的不等式约束。基于上述算法设计闭环制导并完成着陆段数值仿真。仿真结果表明,该制导方法具有较好的终端精度及计算效率。
关键词:    火箭垂直着陆    皮卡迭代    高斯-牛顿法   
Rocket landing guidance based on second-order Picard-Chebyshev-Newton type algorithm
TANG Jingyuan1, GOU Yongjie2, MA Yangyang1, PAN Binfeng1
1. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Shanghai Institute of Aerospace System Engineering, Shanghai 201108, China
Abstract:
This paper proposes a rocket substage vertical landing guidance method based on the second-order Picard-Chebyshev-Newton type algorithm. Firstly, the continuous-time dynamic equation is discretized based on the natural second-order Picard iteration formulation and the Chebyshev polynomial. Secondly, the landing problem that considers terminal constraints is transformed into a nonlinear least-squares problem with respect to the terminal constraint function and solved with the Gauss-Newton method. In addition, the projection method is introduced to the iteration process of the Gauss-Newton method to realize the inequality constraints of the thrust. Finally, the closed-loop strategy for rocket substage vertical landing guidance is proposed and the numerical simulations of the rocket vertical landing stage are carried out. The simulation results demonstrate that compared with the sequential convex optimization algorithm, the proposed algorithm has higher computational efficiency.
Key words:    rocket vertical landing    Picard iteration    Gauss-Newton method   
收稿日期: 2022-12-31     修回日期:
DOI: 10.1051/jnwpu/20244210098
通讯作者: 泮斌峰(1981-),教授 e-mail:panbinfeng@nwpu.edu.cn     Email:panbinfeng@nwpu.edu.cn
作者简介: 唐婧媛(2000-),硕士研究生
相关功能
PDF(2799KB) Free
打印本文
把本文推荐给朋友
作者相关文章
唐婧媛  在本刊中的所有文章
苟永杰  在本刊中的所有文章
马洋洋  在本刊中的所有文章
泮斌峰  在本刊中的所有文章

参考文献:
[1] 王辰, 王小军, 张宏剑, 等. 可重复使用运载火箭发展研究[J]. 飞航导弹, 2018(9): 18-26 WANG Chen, WANG Xiaojun, ZHANG Hongjian, et al. Research on the development of reusable launch vehicle[J]. Aerodynamic Missile Journal, 2018(9): 18-26(in Chinese)
[2] LU P. Introducing computational guidance and control[J]. Journal of Guidance, Control, and Dynamics, 2017,40(2): 193
[3] SOSTARIC R, REA J. Powered descent guidance methods for the moon and mars[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005: 6287
[4] 彭祺擘, 李海阳, 沈红新. 基于高斯-伪谱法的月球定点着陆轨道快速优化设计[J]. 宇航学报, 2010, 31(4): 1012-1016 PENG Qibo, LI Haiyang, SHEN Hongxin. Rapid lunar exact landing trajectory optimization via Gauss pseudospectral method[J]. Journal of Astronautics, 2010,31(4): 1012-1016(in Chinese)
[5] ACIKMESE B, PLOEN S R. Convex programming approach to powered descent guidance for mars landing[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 1353-1366
[6] LIU X. Fuel-optimal rocket landing with aerodynamic controls[J]. Journal of Guidance, Control, and Dynamtcs, 2019, 42(1): 65-77
[7] SAGLIANO M. Pseudospectral convex optimization for powered descent and landing[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(2): 320-334
[8] 王劲博, 崔乃刚, 郭继峰, 等. 火箭返回着陆问题高精度快速轨迹优化算法[J]. 控制理论与应用, 2018,35(3): 389-398 WANG Jinbo, CUI Naigang, GUO Jifeng, et al. High precision rapid trajectory optimization algorithm for launch vehicle landing[J]. Control Theory and Applications, 2018,35(3): 389-398(in Chinese)
[9] SZMUK M, ACIKMESE B, BERNING A W. Successive convexification for fuel-optimal powered landing with aerodynamic drag and non-convex constraints[C]//AIAA Guidance, Navigation, and Control Conference, 2016: 0378
[10] WANG Z, LU Y. Improved sequential convex programming algorithms for entry trajectory optimization[J]. Journal of Spacecraft and Rockets, 2020, 57(6): 1373-1386
[11] 张志国, 马英, 耿光有, 等. 火箭垂直回收着陆段在线制导凸优化方法[J]. 弹道学报, 2017, 29(1): 9-16 ZHANG Zhiguo, MA Ying, GENG Guangyou, et al. Convex optimization method used in the landing-phase online guidance of rocket vertical recovery[J]. Journal of Ballistics, 2017, 29(1): 9-16(in Chinese)
[12] WANG J, CUI N, WEI C. Optimal rocket landing guidance using convex optimization and model predictive control[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(5): 1078-1092
[13] 安泽, 熊芬芬, 梁卓楠. 基于偏置比例导引与凸优化的火箭垂直着陆制导[J]. 航空学报, 2020,41(5): 247-260 AN Ze, XIONG Fenfen, LIANG Zhuonan. Landing-phase guidance of rocket using bias proportional guidance and convex optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 247-260(in Chinese)
[14] MA Y, PAN B. Parallel-structured Newton-type guidance by using modified Chebyshev-Picard iteration[J]. Journal of Spacecraft and Rockets, 2020, 58(3): 729-740
[15] MA Y, PAN B, TANG S. Improved parallel-structured Newton-type guidance for launch vehicles under thrust drop fault[J]. Journal of Spacecraft and Rockets, 2021, 59(2): 467-481
[16] BAI X, JUNKINS J L. Modified Chebyshev-Picard iteration methods for solution of initial value problems[J]. The Journal of the Astronautical Sciences, 2012, 59(1): 327-351
[17] JUNKINS J L, BANI YOUNES A, WOOLLANDS R M, et al. Picard iteration, Chebyshev polynomials and Chebyshev-Picard methods: application in astrodynamics[J]. The Journal of the Astronautical Sciences, 2013, 60(3): 623-653