论文:2023,Vol:41,Issue(6):1229-1234
引用本文:
吕淑媛, 孟飞, 罗文峰, 白雨池, 王荣. 基于相变材料GST与孔径共享宽带宽消色差透镜的设计[J]. 西北工业大学学报
LYU Shuyuan, MENG Fei, LUO Wenfeng, BAI Yuchi, WANG Rong. Design of a wide bandwidth achromatic metalens based on phase change material GST with aperture sharing[J]. Journal of Northwestern Polytechnical University

基于相变材料GST与孔径共享宽带宽消色差透镜的设计
吕淑媛, 孟飞, 罗文峰, 白雨池, 王荣
西安邮电大学 电子工程学院, 陕西 西安 710061
摘要:
提出了在超构透镜结构上采用孔径共享协同操作的方法,根据散单元输出相位与频率呈线性关系,再结合调控相变材料Ge2Sb2Te5晶化率m值,在设定的波段内合理选择散射单元的尺寸,不同波长入射光经过超表面后能产生符合统一焦距要求的相位分布,从而使消色差超透镜的带宽得到相应拓宽,设计了9.5~13 μm连续波段内的偏振不敏感消色差超表面透镜。仿真结果表明,消色差超表面在工作波段内的焦距变化为3.57 μm,与设定焦距的误差约为4.3%,并且各波长入射下的焦点半峰全宽均达到了衍射极限,聚焦效率超过60%。提出的消色差超表面透镜,为消色差超表面的设计提供了新的思路,促进了相变材料在宽带消色差超表面方面的研究。
关键词:    消色差超构透镜    相变材料    晶化率    孔径共享   
Design of a wide bandwidth achromatic metalens based on phase change material GST with aperture sharing
LYU Shuyuan, MENG Fei, LUO Wenfeng, BAI Yuchi, WANG Rong
School of Electronic Engineering, Xi'an University of Posts & Telecommunications, Xi'an 710061, China
Abstract:
This paper proposes the use of aperture sharing synergistic operation in the structure of the metalens, together with the rational selection of the scattering unit size according to the linear relationship between the output phase and frequency of the scattering unit, and the selection of the slope of the phase variation with frequency, combined with the modulation of the phase change material Ge2Sb2Te5 crystallization rate m value, in the set wavelength band, for different wavelengths of incident light through the metasurface can produce a uniform phase distribution. The method is used to achieve a polarization-insensitive achromatic metalens in the 9.5-13 μm continuous wavelength band by adjusting the m value of the phase transition material Ge2Sb2Te5 crystallization rate and producing a phase distribution with a uniform focal length for different wavelengths of incident light passing through the metasurface. The simulation results show that the focal length of the achromatic metasurface varies by 3.57 μm in the working band, with an error of about 4.3% from the set focal length, and the full width of the half-peak of the focal point at all wavelengths of incidence reaches the diffraction limit, and the focusing efficiency exceeds 60%. The achromatic metalens proposed in this paper provides a new idea for the design of achromatic metasurfaces and promotes the research of phase change materials in broadband achromatic metasurfaces.
Key words:    achromatic metalens    phase change materials    crystallization rate    aperture sharing   
收稿日期: 2023-01-09     修回日期:
DOI: 10.1051/jnwpu/20234161229
通讯作者:     Email:
作者简介: 吕淑媛(1976-),西安邮电大学副教授,主要从事微纳光子器件研究。e-mail:1159955131@qq.com
相关功能
PDF(2667KB) Free
打印本文
把本文推荐给朋友
作者相关文章
吕淑媛  在本刊中的所有文章
孟飞  在本刊中的所有文章
罗文峰  在本刊中的所有文章
白雨池  在本刊中的所有文章
王荣  在本刊中的所有文章

参考文献:
[1] DING Fei, CHEN Yiting, SERGEY I B. Gap-surface plasmon metasurfaces for linear-polarization conversion, focusing,and beam splitting[J]. Photonics Research, 2020, 8(5): 707-714
[2] ARBABI E, ARBABI A, KAMALI S M, et al. High efficiency double-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms[J]. Optics Express, 2016, 24(16): 18468-18477
[3] ZHANG Qing, LI Maozhong, LIAO Tingdi, et al Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface[J]. Optics Communications, 2018, 411: 93-100
[4] CHEN Shuqi, LIU Wenwei, LI Zhancheng, et al. Metasurface-empowered optical multiplexing and multifunction[J]. Advanced Materials, 2020, 32(3): 1805912
[5] ZHANG Yuhui, YANG Bowei, LIU Zhiying, et al. Polarization controlled dual functional reflective planar metalens in near infrared regime[J]. Coatings, 2020, 10(4): 389
[6] NI Xingjie, WONG Zijing, MREJEN Michael, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310-1314
[7] HUANG L, MVHLENBERND H, LI X, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials, 2015, 27(41): 6444-6449
[8] WANG L, KRUK S, TANG H, et al. Grayscale transparent metasurface holograms[J]. Optica, 2016, 3(12): 1504
[9] YIN Xinghui, STEINLE Tobias, HUANG Lingling, et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces[J]. Light: Science & Applications, 2017, 6(7): 17016
[10] FAN Zhibin,QIU Haoyang, ZHANG Hanle, et al. A broadband achromatic metalens array for integral imaging in the visible[J]. Light: Science & Applications, 2019, 8(1): 1-10
[11] WANG Yilin, FAN Qingbin, XU Ting. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture[J]. Opto-Electronic Advances, 2021, 4(1): 29-35
[12] NDAO Abdoulaye, HSU Liyi, HA Jeongho, et al. Octave bandwidth photonic fishnet-achromatic-metalens[J/OL](2020-06-25)[2022-12-28]. https://doi.org/10.1038/s41467-020-17015-9
[13] LIN Li, QUAN Yuan, RUN Chen, et al. Chromatic dispersion manipulation based on metasurface devices in the mid-infrared region[J]. Chinese Optics Letters, 2020, 18(8): 69-75
[14] WANG Wei, ZHAO Ruikang, CHANG Shilong, et al. High-efficiency spin-related vortex metalenses[J]. Nanomaterials, 2021, 11(6): 1485
[15] HYEONGJU C, DAEIK K, ASHWINI S, et al. Generation of e-band metasurface-based vortex beam with reduced divergence angle[J]. Scientific Reports, 2020, 10(1): 8289-8297
[16] SAJAN Shrestha, OVERVIG A C, LU M, et al. Broadband achromatic dielectric metalenses[J]. Light: Science & Applications, 2018, 7(1): 85
[17] DING Xiya, KANG Qianlong, GUO Kai, et al. Tunable GST metasurfaces for chromatic aberration compensation in the mid-infrared[J]. Optical Materials, 2020, 109: 110284
[18] SUN Peng, ZHANG Mengdie, DONG Fengliang, et al. Broadband achromatic polarization insensitive metalens over 950 nm bandwidth in the visible and near-infrared[J]. Chinese Optics Letters, 2022, 20(1):013601
[19] KOSTIANTYN Shportko, STEPHAN Kremers, MICHAEL Woda, et al. Resonant bonding in crystalline phase-change materials[J]. Nature Materials,2008,7(8): 653-658