论文:2023,Vol:41,Issue(6):1064-1072
引用本文:
闫循良, 王舒眉, 王培臣, 刘海礼. RBCC高超声速飞行器上升段轨迹快速优化[J]. 西北工业大学学报
YAN Xunliang, WANG Shumei, WANG Peichen, LIU Haili. Rapid ascent trajectory optimization of rocket-based combined cycle hypersonic vehicle[J]. Journal of Northwestern Polytechnical University

RBCC高超声速飞行器上升段轨迹快速优化
闫循良1, 王舒眉2, 王培臣1, 刘海礼1
1. 西北工业大学 航天学院, 陕西 西安 710072;
2. 中国商飞民用飞机试飞中心, 上海 201323
摘要:
针对火箭基组合循环(RBCC)高超声速飞行器上升段轨迹设计所具有的动力系统工作模态复杂、推力与飞行状态存在强耦合、模型强非线性且存在多种复杂约束限制等典型特征,设计了一种基于序列凸优化的RBCC动力上升段轨迹快速优化方法。针对攻角控制系统是否存在二阶滞后情况,分别建立了适用于RBCC高超声速飞行器上升段轨迹优化的数学模型。基于凸优化理论对原优化模型进行凸化和离散化处理,进而设计了改进的轨迹优化求解策略。以末端机械能最大为优化指标,针对攻角控制系统存在/不存在二阶滞后的情况分别进行了上升段轨迹优化仿真。结果表明,所构建模型和轨迹优化方法可以快速、有效地完成RBCC高超声速飞行器上升段轨迹优化,优化结果符合RBCC动力系统工作特点,且可为RBCC动力运用和攻角控制系统设计提供参考。
关键词:    RBCC    高超声速飞行器    上升段轨迹优化    序列凸优化    控制系统二阶滞后   
Rapid ascent trajectory optimization of rocket-based combined cycle hypersonic vehicle
YAN Xunliang1, WANG Shumei2, WANG Peichen1, LIU Haili1
1. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. COMAC Flight Test Center, Shanghai 201323, China
Abstract:
The ascent trajectory design of a rocket-based combined cycle (RBCC) hypersonic vehicle has many typical characteristics, including the complex working mode of the RBCC power system, strong coupling between thrust and flight state, strong nonlinear model and many complex constraints etc. This paper proposes a rapid trajectory optimization method based on sequential convex optimization to optimize the complex ascent trajectory with the RBCC power system. Firstly, a mathematical model for optimizing the ascent trajectory of the RBCC hypersonic vehicle is established to describe the angle of attack control system with and without the second-order lag. Then, the optimization model is made convex and discretized based on the convex optimization theory, and a trajectory optimization strategy is improved. Finally, taking the maximum terminal mechanical energy as optimization objective, the ascent trajectory optimization is simulated in cases with and without the second-order lag in the angle of attack control system. The simulation results show that the proposed mathematical model and the ascent trajectory optimization method are rapid and reliable and that the optimization results meet the characteristics of the RBCC power system and provide reference for the application of a RBCC power system and the design of an angle of attack control system.
Key words:    rocket-based combined cycle    hypersonic vehicle    ascent trajectory optimization    sequential convex optimization    second-order lag of control system   
收稿日期: 2022-09-13     修回日期:
DOI: 10.1051/jnwpu/20234161064
基金项目: 国家自然科学基金(11602296)与中央高校基本科研业务费(G2022KY0613)资助
通讯作者:     Email:
作者简介: 闫循良(1984-),西北工业大学副研究员,主要从事飞行动力学与制导、轨迹设计、协同作战及攻防对抗研究。e-mail:yanxl@nwpu.edu.cn
相关功能
PDF(2678KB) Free
打印本文
把本文推荐给朋友
作者相关文章
闫循良  在本刊中的所有文章
王舒眉  在本刊中的所有文章
王培臣  在本刊中的所有文章
刘海礼  在本刊中的所有文章

参考文献:
[1] GONG C, CHEN B, GU L. Design and optimization of RBCC powered suborbital reusable launch vehicle[C]//Proceedings of AIAA International Space Planes & Hypersonic Systems & Technologies Conference, 2013
[2] 王亚军, 何国强, 秦飞, 等. 火箭冲压组合动力研究进展[J]. 宇航学报, 2019, 40(10): 1126-1133 WANG Yajun, HE Guoqiang, QIN Fei, et al. Research progress of rocket based combined cycle engines[J]. Journal of Astronautics, 2019, 40(10): 1126-1133 (in Chinese)
[3] 阮建刚, 何国强, 吕翔. RBCC-RKT两级入轨飞行器飞行轨迹优化方法[J]. 航空学报, 2014, 35(5): 1284-1291 RUAN Jiangang, HE Guoqiang, LYU Xiang. Trajectory optimization method in two-stage-to-orbit RBCC-RKT launch vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1284-1291 (in Chinese)
[4] 吕翔, 何国强, 刘佩进. RBCC飞行器爬升段轨迹设计方法[J]. 航空学报, 2010, 31(7): 1332-1337 LYU Xiang, HE Guoqiang, LIU Peijin. Ascent trajectory design method for RBCC-powered vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7): 1332-1337 (in Chinese)
[5] 李惠峰, 李昭莹. 高超声速飞行器上升段最优制导间接法研究[J]. 宇航学报, 2011, 32(2): 297-302 LI Huifeng, LI Zhaoying. Indirect method of optimal ascent guidance for hypersonic vehicle[J]. Journal of Astronautics, 2011, 32(2): 297-302 (in Chinese)
[6] DEREK J, DRISCOLL F. Minimum-fuel ascent of a hypersonic vehicle using surrogate optimization[J]. Journal of Aircraft, 2014, 51(6): 1973-1986
[7] WEI J L, TANG X J, YAN J. Costate estimation for a multiple-interval pseudospectral method using collocation at the flipped Legendre-Gauss-Radau points[J]. IEEE/CAA Journal of Automatica Sinica, 2018, 12: 1-15
[8] ZHOU H Y, WANG X G, BAI Y L, et al. Ascent phase trajectory optimization for vehicle with multi-combined cycle engine based on improved particle swarm optimization[J]. Acta Astronautica, 2017, 140: 156-165
[9] YANG S B, CUI T, HAO X Y, et al. Trajectory optimization for a ramjet-powered vehicle in ascent phase via the Gauss pseudospectral method[J]. Aerospace Science and Technology, 2017, 67: 88-95
[10] LU Ping, LIU Xinfu. Solving nonconvex optimal control problems by convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3): 750-765
[11] LIU Xinfu, LU Ping, PAN Binfeng. Survey of convex optimization for aerospace applications[J]. Astrodynamics, 2017, 1(1): 23-40
[12] SZMUK M, ACIKMESE B, Berning A W. Successive convexification for fuel-optimal powered landing with aerodynamic drag and non-convex constraints[C]//Proceedings of AIAA Guidance, Navigation, & Control Conference, 2016
[13] LIU Xinfu. Fuel-optimal rocket landing with aerodynamic controls[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(1): 65-76
[14] 王嘉炜, 张冉, 郝泽明, 等. 基于Proximal-Newton-Kantorovich凸规划的空天飞行器实时轨迹优化[J]. 航空学报, 2020, 41(11): 121-130 WANG Jiawei, ZHANG Ran, HAO Zeming, et al. Real-time trajectory optimization for hypersonic vehicles with Proximal-Newton-Kantorovich convex programming[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 121-130 (in Chinese)
[15] 杨奔, 李天任, 马晓媛. 基于序列凸优化的多约束轨迹快速优化[J]. 航天控制, 2020, 38(3): 25-30 YANG Ben, LI Tianren, MA Xiaoyuan. Fast multi-constraints trajectory optimization based on sequence convex optimization[J]. Aerospace Control, 2020, 38(3): 25-30 (in Chinese)