论文:2023,Vol:41,Issue(5):960-968
引用本文:
王雄, 陈倩, 黄钟童, 薛婷, 张顺琦. 压电梯度板壳结构热电弹耦合建模与仿真[J]. 西北工业大学学报
WANG Xiong, CHEN Qian, HUANG Zhongtong, XUE Ting, ZHANG Shunqi. Thermo-electro-elastic coupled modeling and simulation of functionally graded piezoelectric structures[J]. Journal of Northwestern Polytechnical University

压电梯度板壳结构热电弹耦合建模与仿真
王雄1, 陈倩2, 黄钟童2, 薛婷3, 张顺琦2
1. 榆林学院 能源工程学院, 陕西 榆林 719000;
2. 上海大学 机电工程与自动化学院, 上海 200444;
3. 西北工业大学 机电学院, 陕西 西安 710072
摘要:
相比于复材层合结构,功能梯度材料不但能提供良好的比刚度,而且降低了分层损伤风险,结构梯度化是高性能结构发展的趋势。针对热电弹耦合下压电梯度结构,基于一阶剪切变形假设,构建了非线性温度梯度耦合下的压电梯度薄壁结构板壳有限元模型,实现高效的压电梯度结构"热-电-弹"耦合数值模拟。推导了压电梯度材料的"热-电-弹"耦合本构模型;假设温度梯度沿厚度方向呈二次变化,构建了2种非线性温度变化物理模型;基于一阶剪切变形假设,推导了多物理场耦合下的板壳有限元方程;采用商业有限元计算结构对本模型的准确性进行了验证,对压电梯度壳体结构进行了参数化仿真。
关键词:    梯度结构    智能结构    多物理场耦合    非线性温度场    热电弹耦合   
Thermo-electro-elastic coupled modeling and simulation of functionally graded piezoelectric structures
WANG Xiong1, CHEN Qian2, HUANG Zhongtong2, XUE Ting3, ZHANG Shunqi2
1. School of Energy Engineering, Yulin University, Yulin 719000;
2. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444;
3. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072
Abstract:
Compared with the composite materials, the functionally graded materials can not only provide better specific stiffness but also reduce the risk of layered damage. Therefore, the graded distribution forms have become the development trend of advanced structures. An efficient finite element (FE) modeling method and numerical simulation of plate and shell with nonlinear temperature gradient coupling are developed based on the FOSD hypothesis for thermo-electro-elastic coupled functionally graded piezoelectric material (FGPM) integrated with smart structures in this paper. The constitutive model for thermo-electro-elastic coupled FGPM is derived. Assuming that the temperature gradient distribution changes secondarily through the thickness, two nonlinear physical models for temperature change are constructed. Based on the FOSD hypothesis, the multi-field coupled FE equation of plate and shell is derived. The accuracy of the present FE model is verified by the commercial calculation structures. The parametric simulation of FGPM shells is carried out based on the FE model.
Key words:    functionally graded structures    smart structures    multi-field coupling    nonlinear temperature field    thermo-electro-elastic coupling   
收稿日期: 2022-11-04     修回日期:
DOI: 10.1051/jnwpu/20234150960
基金项目: 国家自然科学基金(11972020)与上海市自然科学基金(21ZR1424100)资助
通讯作者: 张顺琦(1984—),上海大学教授,主要从事智能结构非线性有限元建模、智能结构主动振动控制、复合材料结构计算、高端智能装备健康监测技术研究。e-mail:zhangsq@shu.edu.cn     Email:zhangsq@shu.edu.cn
作者简介: 王雄(1983—),榆林学院教授,主要从事智能系统、智能机器人、智能结构主动振动控制研究。
相关功能
PDF(1650KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王雄  在本刊中的所有文章
陈倩  在本刊中的所有文章
黄钟童  在本刊中的所有文章
薛婷  在本刊中的所有文章
张顺琦  在本刊中的所有文章

参考文献:
[1] ZHONG Z, YU T. Electroelastic analysis of functionally graded piezoelectric material beams[J]. Journal of Intelligent Material Systems & Structures, 2008, 19(6): 707-713
[2] WU C P, DING S. Coupled electro-elastic analysis of functionally graded piezoelectric material plates[J]. Smart Structures and Systems, 2015, 16(5): 781-806
[3] ZENKOUR A M, ALGHANMI R A. Bending of functionally graded plates via a refined quasi-3D shear and normal deformation theory[J]. Curved and Layered Structures, 2018(5): 190-200
[4] MENG G W, WANG H, ZHOU L M, et al. Electromechanical element-free galerkin method for functionally graded piezoelectric plate with circular hole[J]. Journal of Central South University, 2015, 46(11): 4015-4020
[5] NOURMOHAMMADI H, BEHJAT B. Geometrically nonlinear analysis of functionally graded piezoelectric plate using mesh-free RPIM[J]. Engineering Analysis with Boundary Elements, 2019(99): 131-141
[6] ZHONG Z, SHANG E T. Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate[J]. International Journal of Solids and Structures, 2003, 40(20): 5335-5352
[7] ŞIMŞEK M, KOCATVRK T. Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load[J]. Composite Structures, 2009(90): 465-473
[8] PANDEY V B, PARASHAR S K. Static bending and dynamic analysis of functionally graded piezoelectric beam subjected to electromechanical loads[J]. Journal of Mechanical Engineering Science, 2016, 230(19): 3457-3469
[9] AYDOGDU M, TASKIN V. Free vibration analysis of functionally graded beams with simply supported edges[J]. Materials and Design, 2006, 28(5): 1651-1656
[10] SHEN Y, ZHANG P C, HE W, et al. Transverse vibration responses of the in-plane-wise functionally graded piezoelectric composite plates[J]. Mechanics of Advanced Materials and Structures, 2023, 30(3): 592-608
[11] MAO J J, LU H M, ZHANG W, et al. Vibrations of graphene nanoplatelet reinforced functionally gradient piezoelectric composite microplate based on nonlocal theory[J]. Composite Structures, 2020, 236: 111813
[12] SHARMA A. Effect of porosity on active vibration control of smart structure using porous functionally graded piezoelectric material[J]. Composite Structures, 2022, 280: 114815
[13] WANG Y Q. Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state[J]. Acta Astronautica, 2018, 143: 263-271
[14] LI J, XUE Y, LI F, et al. Active vibration control of functionally graded piezoelectric material plate[J]. Composite Structures, 2019, 207: 509-518
[15] LEE H J. Layerwise laminate analysis of functionally graded piezoelectric bimorph beams[J]. Journal of Intelligent Material Systems and Structures, 2005(16): 365-371
[16] KIANI Y, TAHERI S, ESLAMI M R. Thermal buckling of piezoelectric functionally graded material beams[J]. Journal of Thermal Stresses, 2011, 34(7/8/9): 835-850
[17] YANG J, XIANG H J. Thermo-electro-mechanical characteristics of functionally graded piezoelectric actuators[J]. Smart Materials and Structures, 2007(16): 784-797
[18] SAADATFAR M, AGHAIE-KHAFRI M. Thermoelastic analysis of a rotating functionally graded cylindrical shell with functionally graded sensor and actuator layers on an elastic foundation placed in a constant magnetic field[J]. Journal of Intelligent Material Systems & Structures, 2015, 27(4): 512-527
[19] BABAEI H, ESLAMI M R. Thermally induced large deflection of FGM shallow micro-arches with integrated surface piezoelectric layers based on modified couple stress theory[J]. Acta Mechanica, 2019, 230(7): 2363-2384
[20] KUMAR P, HARSHA S P. Response analysis of hybrid functionally graded material plate subjected to thermo-electro-mechanical loading[J]. Journal of Materials Design and Applications, 2020, 235(4): 813-827
[21] HE X Q, NG T Y, SIVASHANKER S, et al. Active control of FGM plates with integrated piezoelectric sensors and actuators[J]. International Journal of Solids and Structures, 2001(38): 1641-1655