论文:2023,Vol:41,Issue(5):905-914
引用本文:
刘喜燕, 袁绪龙, 罗凯, 杜兆星. 超空泡航行体流体动力延迟特性数值模拟研究[J]. 西北工业大学学报
LIU Xiyan, YUAN Xulong, LUO Kai, DU Zhaoxing. Numerical simulation study on hydrodynamic time-delay characteristics of supercavitating vehicle[J]. Journal of Northwestern Polytechnical University

超空泡航行体流体动力延迟特性数值模拟研究
刘喜燕, 袁绪龙, 罗凯, 杜兆星
西北工业大学 航海学院, 陕西 西安 710072
摘要:
由于超空泡形态的延迟效应,超空泡航行体在机动航行过程中的流体动力会展现出极强的非定常特性,给航行体流体动力的获取、运动性能的分析以及控制方案的设计带来了巨大的挑战,因此开展航行体超空泡状态下的流体动力特性和形成机理的研究具有重要的意义。采用动态网格技术,建立了超空泡航行体连续变攻角运动的三维数值模型,并通过水洞试验结果验证了该模型的准确性,仿真研究了不同速度、摆动频率和空化器预置舵角下超空泡航行体非定常空泡发展过程和流体动力特性变化规律。研究表明:超空泡航行体非定常运动状态下的流体动力具有延迟特性,采用常规航行体流体动力计算方法预报结果存在较大误差;空泡延迟效应和附体空泡的动态发展是导致超空泡航行体非定常流体动力延迟特性形成的根本原因;超空泡航行体流体动力延迟特性随着速度的增大而显著增强、摆动频率增大而减弱,空化器预置舵角导致航行体在正负攻角摆动时呈现不同的延迟特性。
关键词:    超空泡航行体    非定常流体动力    延迟特性    附体空泡    数值模拟   
Numerical simulation study on hydrodynamic time-delay characteristics of supercavitating vehicle
LIU Xiyan, YUAN Xulong, LUO Kai, DU Zhaoxing
School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Due to the existence of the time-delay effect of the supercavity, the fluid dynamics of the supercavitating vehicle in the maneuvering will exhibit extremely strong unsteady characteristics, which will bring great challenges to the hydrodynamic acquisition, motion performance analysis and control scheme design and evaluation of the vehicle. Therefore, it is of great significance to study the hydrodynamic characteristics and formation mechanism of the vehicle in supercavitating state. In this paper, a three-dimensional numerical model for continuous motion of the supercavitating vehicle at varying angles of attack is established by using the dynamic mesh technique. The accuracy of the model is verified by using the water tunnel test results. Through simulation, the unsteady cavitation development and hydrodynamic characteristics of the supercavitating vehicle at different speeds, swing frequencies and preset rudder angles are obtained. The results show that the hydrodynamics of the supercavitating vehicle under unsteady motion has time-delay characteristics, and the prediction results of the conventional hydrodynamic calculation method of the vehicle have large errors. The cavitation time-delay effect and the dynamic development of the attached cavitation are the fundamental reasons for the formation of the unsteady hydrodynamic time-delay characteristics of the supercavitating vehicle. The hydrodynamic time-delay characteristics of the supercavitating vehicle is significantly enhanced with the increasing of velocity and weakened with the increasing of swing frequency. The preset rudder angle of the cavitator results in different time-delay characteristics when the vehicle swings at positive and negative angles of attack.
Key words:    supercavitating vehicle    unsteady hydrodynamics    time-delay effect    attached cavitation    numerical simulation   
收稿日期: 2022-10-27     修回日期:
DOI: 10.1051/jnwpu/20234150905
基金项目: 国家重点实验室基金(6142604190401)资助
通讯作者: 袁绪龙(1977—),西北工业大学副教授,主要从事跨介质航行力学研究。e-mail:yuanxulong@nwpu.edu.cn     Email:yuanxulong@nwpu.edu.cn
作者简介: 刘喜燕(1992—),西北工业大学博士研究生,主要从事航行器水动力学研究。
相关功能
PDF(5091KB) Free
打印本文
把本文推荐给朋友
作者相关文章
刘喜燕  在本刊中的所有文章
袁绪龙  在本刊中的所有文章
罗凯  在本刊中的所有文章
杜兆星  在本刊中的所有文章

参考文献:
[1] NEAL E F, ANN W S, JAMES S U J, et al. Control strategies for supercavitating vehicles[J]. Journal of Vibration and Control, 2002, 8(2): 219-242
[2] 李魁彬, 王安稳, 毛柳伟, 等. 变速航行体自然超空泡形态与记忆效应研究[J]. 华中科技大学学报, 2013, 41(6): 94-98 LI Kuibin, WANG Anwen, MAO Liuwei, et al. Shapes and memory effects of natural supercavitation of navigating bodies with variables speeds[J]. Journal of Huazhong University of Science and Technology, 2013, 41(6): 94-98 (in Chinese)
[3] 周景军, 李育英, 赵京丽. 超空泡航行体加速过程流动特性研究[J]. 船舶力学, 2018, 22(4): 397-404 ZHOU Jingjun, LI Yuying, ZHAO Jingli. Research on the flow characteristic of supercavitating vehicle in the process of acceleration[J]. Journal of Ship Mechanics, 2018, 22(4): 397-404 (in Chinese)
[4] 周景军, 赵京丽, 项庆睿. 超空泡航行体操纵过程流体动力特性数值模拟研究[J]. 船舶力学, 2018, 22(5): 560-568 ZHOU Jingjun, ZHAO Jingli, XIANG Qingrui. Numerical simulation on the hydrodynamics of supercavitating vehicle in the process of steering[J]. Journal of Ship Mechanics, 2018, 22(5): 560-568 (in Chinese)
[5] 李杰, 祝许皓. 超空泡航行体流体动力数值研究[J]. 宇航总体技术, 2020, 4(3): 22-27 LI Jie, ZHU Xuhao. Numerical study on hydrodynamic characteristics of supercavitating vehicle[J]. Astronautical Systems Engineering Technology, 2020, 4(3): 22-27 (in Chinese)
[6] 陈诚. 超空泡航行器尾拍作用机理与动力学建模[D]. 西安: 西北工业大学, 2019 CHEN Cheng. Investigation of the mechanism of tail slapping and dynamic modeling of supercavitating vehicles[D]. Xi'an: Northwestern Polytechnical University, 2019 (in Chinese)
[7] 王威, 王聪, 李聪慧, 等. 周期性阵风流对通气航行体超空泡形态及流体动力特性影响[J]. 振动与冲击, 2019, 38(3): 208-214 WANG Wei, WANG Cong, LI Conghui, et al. Effects of periodic gust flow on super-cavitation morphology and hydrodynamic characteristics of a ventilated vehicle[J]. Journal of Vibration and Shock, 2019, 38(3): 208-214 (in Chinese)
[8] 何广华, 杨豪, 王威, 等. 周期性来流扰动对通气超空泡航行体流体动力特性影响[J]. 振动与冲击, 2022, 41(10): 16-22 HE Guanghua, YANG Hao, WANG Wei, et al. Influence of periodic inflow disturbance on the hydrodynamic characteristics of ventilated supercavitating vehicles[J]. Journal of Vibration and Shock, 2022, 41(10): 16-22 (in Chinese)
[9] 罗凯, 左振浩, 许海雨, 等. 高弗劳德数通气超空泡流型迟滞特性数值仿真[J]. 哈尔滨工程大学, 2022, 43(4): 495-502 LUO Kai, ZUO Zhenhao, XU Haiyu, et al. Numerical simulation of the hysteresis characteristics of ventilated supercavity with high Froude number[J]. Journal of Harbin Engineering University, 2022, 43(4): 495-502 (in Chinese)
[10] 刘喜燕, 袁绪龙, 王鹰, 等. 超空泡航行体非定常流体动力延迟效应水洞试验研究[J].实验流体力学, 2021, 35(5): 26-33 LIU Xiyan, YUAN Xulong, WANG Ying, et al. Experimental study on time-delay effect of unsteady hydrodynamics of the supercavitating vehicle in water tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 26-33 (in Chinese)
[11] 王威, 王聪, 杜严锋, 等. 周期性阵风流作用下通气超空泡的仿真研究[J]. 兵工学报, 2018, 39(9): 1772-1779 WANG Wei, WANG Cong, DU Yanfeng, et al. Simulation study of ventilated supercavity in a periodic gust flow[J]. Acta Armamentarii, 2018, 39(9): 1772-1779 (in Chinese)
[12] LIU Xiyan, YUAN Xulong, LUO Kai, et al. Blockage effect of a wall on the hydrodynamic characteristics of a supercavitating vehicle's aft body[J]. Ocean Engineering, 2022, 256: 111564
[13] 祁晓斌, 刘喜燕, 王瑞, 等. 高速射弹小角度入水数值模拟研究[J]. 中国造船, 2022, 63(3): 31-39 QI Xiaobin, LIU Xiyan, WANG Rui, et al. Numerical simulation of water entry for high-speed projectile at small angle[J]. Shipbuilding of China, 2022, 63(3): 31-39 (in Chinese)
[14] 张忠宇. 水中航行体主动通气空泡流试验与数值方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018 ZHANG Zhongyu. Experimental and numerical methods for active ventilated cavity flows of underwater vehicles[D]. Harbin: Harbin Engineering University, 2018 (in Chinese)
[15] 张宇文, 袁绪龙, 邓飞. 超空泡航行体流体动力学[M]. 北京: 国防工业出版社, 2014 ZHANG Yuwen, YUAN Xulong, DENG Fei. Fluid dynamic of supercavitating underwater vehicles[M]. Beijing: National Defense Industry Press, 2014 (in Chinese)
[16] 袁绪龙, 朱珠. 预置舵角对高速入水弹道和流体动力的影响[J]. 应用力学学报, 2015, 32(1): 11-16 YUAN Xulong, ZHU Zhu. Influence of preset rudder angle on trajectory and hydro-dynamic at high-speed water-entry[J]. Chinese Journal of Applied Mechanic, 2015, 32(1): 11-16 (in Chinese)