论文:2023,Vol:41,Issue(5):871-877
引用本文:
郭琳钰, 高剑, 焦慧锋, 宋允轩, 陈依民, 潘光. 基于RBF神经网络的自主水下航行器模型预测路径跟踪控制[J]. 西北工业大学学报
GUO Linyu, GAO Jian, JIAO Huifeng, SONG Yunxuan, CHEN Yimin, PAN Guang. Model predictive path following control of underwater vehicle based on RBF neural network[J]. Journal of Northwestern Polytechnical University

基于RBF神经网络的自主水下航行器模型预测路径跟踪控制
郭琳钰1, 高剑1, 焦慧锋2,3, 宋允轩1, 陈依民1, 潘光1
1. 西北工业大学 航海学院, 陕西 西安 710072;
2. 西北工业大学 无人系统技术研究院, 陕西 西安 710072;
3. 中国船舶科学研究中心, 江苏 无锡 214082
摘要:
针对自主水下航行器(AUV)的模型不确定性和多约束的特点,设计了基于径向基(RBF)神经网络的模型预测控制器。在使用模型预测控制(MPC)进行路径跟踪控制的基础上,利用实时测量数据在线训练RBF神经网络,对AUV模型不确定性进行补偿,抑制了模型不确定性对模型预测控制器的干扰,减小了系统的超调量和跟踪误差。仿真结果表明,基于RBF-MPC路径跟踪控制算法与经典的MPC算法相比,具有更好的暂态和稳态性能。
关键词:    自主水下航行器    模型预测控制    径向基神经网络    路径跟踪控制   
Model predictive path following control of underwater vehicle based on RBF neural network
GUO Linyu1, GAO Jian1, JIAO Huifeng2,3, SONG Yunxuan1, CHEN Yimin1, PAN Guang1
1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China;
2. Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China;
3. China Ship Scientific Research Center, Wuxi 214082, China
Abstract:
A model prediction controller (MPC) based on radial basis function (RBF) neural network is designed to counter the model uncertainty and multiple constraints of the autonomous underwater vehicle (AUV). On this basis of path following control with MPC, the RBF neural network is trained online with real-time measurement data to compensate for the AUV's model uncertainty, thus suppressing the interference of model uncertainty on the MPC and reducing its overshoot and tracking error. Simulation results show that the path following algorithm based on RBF-MPC has better transient and steady-state performance compared with the classical MPC algorithm.
Key words:    autonomous underwater vehicle    model predictive control    radial basis function neural network    path following   
收稿日期: 2022-07-13     修回日期:
DOI: 10.1051/jnwpu/20234150871
基金项目: 国家自然科学基金(51979228)资助
通讯作者: 高剑(1979—),西北工业大学教授,主要从事水下航行器路径规划与控制研究。e-mail:jiangao@nwpu.edu.cn     Email:jiangao@nwpu.edu.cn
作者简介: 郭琳钰(1997—),西北工业大学博士研究生,主要从事水下机器人系统辨识与控制研究。
相关功能
PDF(2311KB) Free
打印本文
把本文推荐给朋友
作者相关文章
郭琳钰  在本刊中的所有文章
高剑  在本刊中的所有文章
焦慧锋  在本刊中的所有文章
宋允轩  在本刊中的所有文章
陈依民  在本刊中的所有文章
潘光  在本刊中的所有文章

参考文献:
[1] JALALYING B. The NDRE-AUV flight control system[J]. IEEE Journal of Oceanic Engineering, 1994, 19(4): 497-501
[2] REZAZADEGAN F, SHOJAEI K, SHEIKHOLEALAM F, et al. A novel approach to 6-DOF adaptive trajectory tracking control of an AUV in the presence of parameter uncertainties[J]. Ocean Engineering, 2015, 107: 246-258
[3] MAALOOF D, CHEMORI A, CREUZE V, et al. L-1 adaptive depth and pitch control of an underwater vehicle with real-time experiments[J]. Ocean Engineering, 2015, 98: 66-77
[4] DO K D. Robust adaptive tracking control of underactuated ODINs under stochastic sea loads[J]. Robotics & Autonomous Systems, 2015, 72: 152-163
[5] GAO X, LIN H, WANG Y, et al. Application of robust optimal sliding mode control for underactuated AUV system with uncertainties[C]//2020 Chinese Control and Decision Conference, Hefei, 2020: 245-250
[6] WANG F, GUO C, YU H, et al. Three-dimensional path following of underactuated AUV based on nonsingular terminal sliding mode control[C]//2020 5th International Conference on Automation, Control and Robotics Engineering, Dalian, 2020: 346-350
[7] HU Y, YU J, YU H, et al. Adaptive fuzzy command filtered control with error compensation mechanism for AUVs via backstepping[C]//2018 Chinese Control and Decision Conference, Shenyang, 2018: 1226-1230
[8] CERVANTES J, YU W, SALAZAR S, et al. Output based backstepping control for trajectory tracking of an autonomous underwater vehicle[C]//2016 American Control Conference, Boston, 2016: 6423-6428
[9] WANG Y, ZHANG M, WILSON P, et al. Adaptive neural network-based backstepping fault tolerant control for underwater vehicles with thruster fault[J]. Ocean Engineering, 2015, 110(1): 15-24
[10] CUI J, ZHAO L, YU J, et al. Neural network-based adaptive finite-time consensus tracking control for multiple autonomous underwater vehicles[J]. IEEE Access, 2019, 7: 33064-33074
[11] GAO J, YAN W, ZHAO N, et al. Global path following control for unmanned underwater vehicles[C]//Proceedings of the 29th Chinese Control Conference, Beijing, 2010: 3188-3192
[12] SUN Y, ZHANG C, XU H, et al. Three-dimensional path tracking control of the underactuated AIUV based on backstepping sliding mode[C]//2019 4th Asia-Pacific Conference on Intelligent Robot Systems, Nagoya, 2019: 95-103
[13] 张广洁, 严卫生, 高剑. 基于模型预测控制的欠驱动AUV直线路径跟踪[J]. 水下无人系统学报, 2017, 25(2): 82-88 ZHANG Guangjie, YAN Weisheng, GAO Jian. Underactuated AUV linear path following based on model predictive control[J]. Journal of Underwater Unmanned System, 2017, 25(2): 82-88 (in Chinese)
[14] HESHMATI S, KARRAS G C, MARANTOS P, et al. A robust model predictive control approach for autonomous underwater vehicles operating in a constrained workspace[C]//2018 IEEE International Conference on Robotics and Automation, Brisbane, 2018: 6183-6188
[15] SHEN C, SHI Y, BUCKHAM B. Trajectory tracking control of an autonomous underwater vehicle using Lyapunov-based model predictive control[J]. IEEE Trans on Industrial Electronics, 2017, 65(7): 5796-5805
[16] GAO J, ZHANG G, WU P, et al. Model predictive visual serving of fully-actuated underwater vehicles with a sliding mode disturbance observer[J]. IEEE Access, 2019, 7: 25516-25526
[17] 刘昌鑫, 高剑, 徐德民. 一种欠驱动AUV模型预测路径跟踪控制方法[J]. 机械科学与技术, 2017, 36(11): 1653-1657 LIU Changxin, GAO Jian, XU Demin. A predictive path following method based on underactuated AUV model[J]. Mechanical Science and Technology, 2017, 36(11): 1653-1657 (in Chinese)
[18] SHEN C, SHI Y, BUCKHAM B. Path-following control of an AUV: a multi-objective model predictive control approach[J]. IEEE Trans on Control Systems Technology, 2019, 27(3): 1334-1342
相关文献:
1.高剑, 刘昌鑫.基于应答器位置测量的AUV非线性模型预测对接控制[J]. 西北工业大学学报, 2015,33(5): 860-866