论文:2023,Vol:41,Issue(3):587-594
引用本文:
万鹏程, 冯为可, 童宁宁, 韦伟. 一种面向时变射频干扰的时频特征预测网络[J]. 西北工业大学学报
WAN Pengcheng, FENG Weike, TONG Ningning, WEI Wei. A time-frequency feature prediction network for time-varying radio frequency interference[J]. Journal of Northwestern Polytechnical University

一种面向时变射频干扰的时频特征预测网络
万鹏程1, 冯为可2, 童宁宁2, 韦伟3
1. 空军航空大学, 吉林 长春 130000;
2. 空军工程大学 防空反导学院, 陕西 西安 710051;
3. 空军勤务学院, 江苏 徐州 221000
摘要:
时变射频干扰非线性强,难以用线性方法进行有效预测,进而使抗干扰决策缺少信息支撑。针对该问题提出了基于时频相关特征的频谱预测递归神经网络,通过滑窗模型表征时频序列的二维相关性,将频谱预测问题转化为类似于空时序列预测的问题,增加跨时间帧的梯度桥结构以减轻梯度在长时间、多层级网络传播时的衰减现象,用匹配性更高的损失函数提高训练效率和网络性能。仿真和实验结果验证了该网络预测结果的有效性。
关键词:    频谱预测    射频干扰    深度神经网络    循环神经网络   
A time-frequency feature prediction network for time-varying radio frequency interference
WAN Pengcheng1, FENG Weike2, TONG Ningning2, WEI Wei3
1. Aviation University of Air Force, Changchun 130000, China;
2. College of Air and Missile Defense, Air Force Engineering University, Xi'an 710051, China;
3. Air Force Logistics Academy, Xuzhou 221000, China
Abstract:
The time-varying radio frequency interference has strong nonlinear dynamic characteristics, which is difficult to be predicted by linear method effectively, making the anti-interference decision without sufficient information support. To solve this problem, a recurrent neural network for spectrum prediction based on time-frequency correlation features is proposed. A sliding window is used to characterize the two-dimensional correlation of time-frequency series, and the spectrum prediction problem is transformed into a problem similar to spatiotemporal sequence prediction. A gradient bridge structure across time frames is added to reduce the attenuation of the gradient in the long time and multi-level network propagation. The training efficiency and network performance are improved by the loss function with better matching. Simulation and experimental results verify the validity of the network prediction results.
Key words:    spectrum prediction    radio frequency interference    deep neural network    recurrent neural network   
收稿日期: 2022-07-04     修回日期:
DOI: 10.1051/jnwpu/20234130587
基金项目: 国家自然科学基金面上项目(62001507)资助
通讯作者: 冯为可(1992—),空军工程大学讲师,主要从事雷达信号处理研究。e-mail:fengweike007@163.com     Email:fengweike007@163.com
作者简介: 万鹏程(1993—),空军航空大学讲师,主要从事目标探测与识别研究。
相关功能
PDF(3284KB) Free
打印本文
把本文推荐给朋友
作者相关文章
万鹏程  在本刊中的所有文章
冯为可  在本刊中的所有文章
童宁宁  在本刊中的所有文章
韦伟  在本刊中的所有文章

参考文献:
[1] NGUYEN L H, TRAN T D, DO T T. Sparse models and sparse recovery for ultra-wideband SAR applications[J]. IEEE Trans on Aerospace and Electronic Systems, 2014, 50(2):940-958
[2] HUANG Y, ZHANG L, LI J, et al. Reweighted tensor factorization method for SAR narrowband and wideband interference mitigation using smoothing multiview tensor model[J]. IEEE Trans on Geoscience and Remote Sensing, 2020, 58(5):3298-3313
[3] 殷加鹏, 李健兵, 庞晨, 等. 一种极化-多普勒气象雷达的射频干扰滤波方法[J]. 雷达学报, 2021, 10(6):905-918 YIN Jiapeng, LI Jianbing, PANG Chen, et al. A radio frequency interference mitigation method for polarimetric doppler weather radars[J]. Journal of Radars, 2021, 10(6):905-918(in Chinese)
[4] YANG Z, DU W, LIU Z, et al. WBI suppression for sar using iterative adaptive method[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3):1008-1014
[5] HUANG Y, ZHANG L, LI J, et al. A novel tensor technique for simultaneous narrowband and wideband interference suppression on single-channel SAR system[J]. IEEE Trans on Geoscience and Remote Sensing, 2019, 57(12):9575-9588
[6] AUBRY A, CAROTENUTO V, MAIO A D, et al. High range resolution profile estimation via a cognitive stepped frequency technique[J]. IEEE Trans on Aerospace and Electronic Systems, 2019, 55(1):444-458
[7] 刘波, 白晓东, 张更新, 等. 深度学习在认知无线电中的应用研究综述[J]. 华东师范大学学报, 2021(1):36-52 LIU Bo, BAI Xiaodong, ZHANG Gengxin, et al. Review of deep learning in cognitive radio[J]. Journal of East China Normal University, 2021(1):36-52(in Chinese)
[8] KIRK B H, NARAYANAN R M, GALLAGHER K A, et al. Avoidance of time-varying radio frequency interference with software-defined cognitive radar[J]. IEEE Trans on Aerospace and Electronic Systems, 2019, 55(3):1090-1107
[9] KOVARSKIY J A, KIRK B H, MARTONE A F, et al. Evaluation of real-time predictive spectrum sharing for cognitive radar[J]. IEEE Trans on Aerospace and Electronic Systems, 2021, 57(1):690-705
[10] 申滨, 王欣, 陈思吉, 等. 基于机器学习主用户发射模式分类的蜂窝认知无线电网络频谱感知[J]. 电子与信息学报, 2021, 43(1):92-100 SHEN Bin, WANG Xin, CHEN Siji, et al. Machine learning based primary user transmit mode classification for spectrum sensing in cellular cognitive radio network[J]. Journal of Electronics & Information Technology, 2021, 43(1):92-100(in Chinese)
[11] 王雅平, 魏光辉, 尚在飞, 等. 通信电台带外多频干扰预测方法与验证[J]. 北京理工大学学报, 2020, 40(11):1230-1237 WANG Yaping, WEI Guanghui, SHANG Zaifei, et al. Out-of-band multi-frequency interference prediction method and verification for communication station[J]. Transactions of Beijing Institute of Technology, 2020, 40(11):1230-1237(in Chinese)
[12] 张庆龙, 王玉明, 程二威, 等. 导航接收机带外电磁干扰的效应规律及预测方法研究[J]. 系统工程与电子技术, 2021, 43(9):2588-2593 ZHANG Qinglong, WANG Yuming, CHENG Erwei, et al. Investigation on the effect law and prediction method of out-of-band electromagnetic interference in navigation receiver[J]. System Engineering and Electronics, 2021, 43(9):2588-2593(in Chinese)
[13] 王新新, 王祥, 范剑超, 等. 广播卫星电视接收机对SMAP卫星L波段微波辐射计的射频干扰特征分析[J]. 电子与信息学报, 2021, 43(8):2292-2299 WANG Xinxin, WANG Xiang, FAN Jianchao, et al. Analysis of RF interference characteristics of broadcasting satellite TV receivers to SMAP satellite L-band microwave radiometer[J]. Journal of Electronics & Information Technology, 2021, 43(8):2292-2299(in Chinese)
[14] STINCO P, GRECO M, GINI F, et al. Cognitive radars in spectrally dense environments[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(10):20-27
[15] YU L, WANG Q, GUO Y, et al. Spectrum availability prediction in cognitive aerospace CO[C]//IEEE 2017 Cognitive Communications for Aerospace Applications Workshop, 2017
[16] SHAWEL B S, WOLDEGEBREAL D H, POLLIN S. Convolutional LSTM-based long-term spectrum prediction for dynamic spectrum access[C]//European Signal Processing Conference, 2019:1-5
[17] XING J S, CHEN Z, WANG H, et al. Convolutional LSTM network:a machine learning approach for precipitation nowcasting[C]//Twenty-ninth Conference on Neural Information Processing Systems, 2015:802-810
[18] LI X, LIU Z, CHEN G, et al. Deep Learning for spectrum prediction from spatial-temporal-spectral data[J]. IEEE Communications Letters, 2020, 25(4):1216-1220
[19] HE K, SUN J. Convolutional neural networks at constrained time cost[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015:5353-5360