论文:2023,Vol:41,Issue(3):510-517
引用本文:
李朋, 尹娟妮, 张佼龙, 高智刚, 黄河. 立方星SMA直线作动解锁机构的优化设计[J]. 西北工业大学学报
LI Peng, YIN Juanni, ZHANG Jiaolong, GAO Zhigang, HUANG He. Optimal design of SMA linear actuation unlocking mechanism for CubeSat[J]. Journal of Northwestern Polytechnical University

立方星SMA直线作动解锁机构的优化设计
李朋, 尹娟妮, 张佼龙, 高智刚, 黄河
西北工业大学 精确制导与控制研究所, 陕西 西安 710072
摘要:
为实现在空间、功耗严苛约束下立方星太阳板的可靠解锁,研制了一种形状记忆合金(SMA)丝直线作动解锁机构。采用弹簧-SMA结构,依靠弹簧力锁紧,通过SMA丝加热产生回复应力驱动拔销运动实现解锁。建立了机构的数学模型,并通过仿真得到SMA解锁机构的行程、解锁时间、功率与合金丝直径、工作电压的描述关系。以解锁时间和功率的整体评价最优为目标,采用粒子群优化算法对合金丝的直径和工作电压进行优化设计,得到直径0.5 mm的SMA解锁机构在1.2 V驱动电压下具有最佳工作特性。最后对优化结果开展实验分析,表明作动机构的解锁时间为3.2 s,功率为3.55 W,拔销行程为1.8 mm,与仿真一致。所研制的解锁机构可靠性高,工作特性一致,具有较好的适应性,已通过各项环境实验并成功在轨应用。
关键词:    立方星    形状记忆合金(SMA)    解锁机构    直线作动机构    粒子群优化   
Optimal design of SMA linear actuation unlocking mechanism for CubeSat
LI Peng, YIN Juanni, ZHANG Jiaolong, GAO Zhigang, HUANG He
Institute of Precision Guidance and Control, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
In order to realize the reliable unlocking of solar arrays of a CubeSat under the strict constraints of space and power dissipation, a shape memory alloy(SMA) wire linear actuation unlocking mechanism is developed. Through using a spring-SMA structure, relying on the spring force locking, heating the SMA wire and producing a recovery stress drive pin movement, the solar arrays are unlocked. The mathematical model of the unlocking mechanism is established, and the relationship among stroke, unlocking time, power, alloy wire diameter and working voltage of the SMA unlocking mechanism is obtained through simulation. In order to optimize its overall unlocking time and power, the particle swarm optimization algorithm is used to optimize the diameter and working voltage of the alloy wire. The simulation results show that the SMA unlocking mechanism with the wire whose diameter is 0.5 mm has the best working performance when the driving voltage is 1.2 V. Finally, the experimental study of the design results shows that the unlocking time of the actuation unlocking mechanism is 3.2 s, its power is 3.55 W and that its pin-pulling stroke is 1.8 mm, being consistent with the simulation results. The unlocking mechanism has a high reliability, consistent working performance and good adaptability, therefore having passed various environmental tests and being successfully applied to a CubeSat in orbit.
Key words:    CubeSat    shape memory alloy(SMA)    unlocking mechanism    linear actuation    particle swarm optimization   
收稿日期: 2022-07-21     修回日期:
DOI: 10.1051/jnwpu/20234130510
基金项目: 国家自然科学基金(52007153)资助
通讯作者: 尹娟妮(1996—),西北工业大学硕士研究生,主要从事微小卫星能源系统研究。e-mail:1677952170@qq.com     Email:1677952170@qq.com
作者简介: 李朋(1987—),西北工业大学副研究员,主要从事航天器高性能电力驱动与能源系统研究。
相关功能
PDF(2528KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李朋  在本刊中的所有文章
尹娟妮  在本刊中的所有文章
张佼龙  在本刊中的所有文章
高智刚  在本刊中的所有文章
黄河  在本刊中的所有文章

参考文献:
[1] 秦晓宇, 张小勇, 闫晓军, 等. 自锁式形状记忆合金馈源锁紧机构[J]. 宇航学报, 2016, 37(3):357-363 QIN Xiaoyu, ZHANG Xiaoyong, YAN Xiaojun, et al. Self locking shape memory alloy feed locking mechanism[J]. Journal of Astronautics, 2016, 37(3):357-363(in Chinese)
[2] YAMANO A, SHINTANI A, ITO T, et al. Reducing the power consumption of a shape memory alloy wire actuator drive by numerical analysis and experiment[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(4):1854-1865
[3] NIKDEL N, NIKDEL P. Using Neural network model predictive control for controlling shape memory alloy-based manipulator[J]. IEEE Trans on Industrial Electronics, 2013, 61(3):1394-1401
[4] 宣明, 张道威,谷松, 等. 微小卫星太阳帆板压紧释放机构的设计[J].光学精密工程, 2017, 25(4):447-454 XUAN Ming, ZHANG Daowei, GU Song, et al. Design of compact release mechanism for solar panel of micro satellite[J]. Optical Precision Engineering, 2017, 25(4):447-454(in Chinese)
[5] LIU M, HAO L. Design and control of a robotic wrist joint actuated by the shape memory alloy actuator[C]//2021 IEEE 11th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, 2021:225-229
[6] 闫晓军, 于海, 张可, 等. 小型、快速SMA空间解锁机构的设计与试验研究[J]. 宇航学报, 2008, 29(3):1042-1046 YAN Xiaojun, YU Hai, ZHANG Ke, et al. Design and experimental study of small and fast SMA spatial unlocking mechanism[J]. Journal of Astronautics, 2008, 29(3):1042-1046(in Chinese)
[7] 江晋民. 基于形状记忆合金的低冲击大承载压紧释放装置研究[D]. 哈尔滨:哈尔滨工业大学, 2012 JIANG Jinmin. Research on low impact and large load compression release device based on shape memory alloy[D]. Harbin:Harbin Institute of Technology, 2012(in Chinese)
[8] 关天民, 徐露嫡, 雷蕾. 基于记忆合金弹簧驱动的分离弹射装置结构设计[J]. 大连交通大学学报, 2020, 41(1):54-58 GUAN Tianmin, XU Ludi, LEI Lei. Structural design of separation ejection device driven by memory alloy spring[J]. Journal of Dalian Jiaotong University, 2020, 41(1):54-58(in Chinese)
[9] 张敏, 李松晶. 基于形状记忆合金(SMA)驱动的微流控变色系统[J]. 西北工业大学学报, 2020, 38(2):377-383 ZHANG Min, LI Songjing. Microfluidic color changing system driven by shape memory alloy(SMA)[J]. Journal of Northwestern Polytechnical University of Technology, 2020, 38(2):377-383(in Chinese)
[10] 闫晓军, 张小勇. 形状记忆合金智能结构[M]. 北京:科学出版社, 2015 YAN Xiaojun, ZHANG Xiaoyong. Shape-memory alloy intelligent structure[M]. Beijing:Science Press, 2015(in Chinese)
[11] LU Y, ZHANG R. A new variable speed phase transformation constitutive model of shape memory alloys[J]. Materials Research Express, 2019, 6(10):105705
[12] 赵士成. 考虑温度记忆效应的形状记忆合金热力学本构模型[D]. 哈尔滨:哈尔滨工程大学, 2012 ZHAO Shicheng. Thermodynamic constitutive model of shape memory alloy considering temperature memory effect[D]. Harbin:Harbin Engineering University, 2012(in Chinese)
[13] SHI H, TAN K, XU J, et al. Design and performance analysis of magnetic shape memory alloy actuator with a compact electromagnetic coil configuration[J]. IEEE Trans on Magnetics, 2020, 56(8):1-13
[14] MAO M, CUI L, ZHANG Q, et al. Classification and summarization of solar photovoltaic MPPT techniques:a review based on traditional and intelligent control strategies[J]. Energy Reports, 2020, 6:1312-1327
[15] 白雪冰, 武云鹏, 林鑫. 基于ACPSO算法在光伏MPPT控制中的应用[J]. 电源技术, 2020, 44(12):1804-1808 BAI Xuebing, WU Yunpeng, LIN Xin. Application of ACPSO algorithm in photovoltaic MPPT control[J]. Power Technology, 2020, 44(12):1804-1808(in Chinese)