论文:2023,Vol:41,Issue(2):409-418
引用本文:
郭林, 刘飞, 李佳钰, 何佩, 李清东, 王继维, 郭阳明. 基于能量管理策略的太阳能无人机航迹跟踪控制[J]. 西北工业大学学报
GUO Lin, LIU Fei, LI Jiayu, HE Pei, LI Qingdong, WANG Jiwei, GUO Yangming. Path tracking control of solar-powered UAV based on energy management strategy[J]. Journal of Northwestern Polytechnical University

基于能量管理策略的太阳能无人机航迹跟踪控制
郭林1,2, 刘飞3, 李佳钰4, 何佩1, 李清东3, 王继维1, 郭阳明1
1. 西北工业大学 计算机学院, 陕西 西安 710072;
2. 中国航天空气动力技术研究院, 北京 100074;
3. 北京航空航天大学 自动化科学与电气工程学院, 北京 100191;
4. 西北工业大学 伦敦玛丽女王大学工程学院, 陕西 西安 710072
摘要:
协调高空长航时太阳能无人机的高空作业任务与长期能源利用效率之间的冲突,是无人机控制的核心问题之一。基于太阳能无人机的能量获取、储存与消耗存在紧密的耦合关系,提出了一种综合能量管理策略和航迹跟踪控制的方法。基于建立的太阳能无人机三维质点运动模型、储能电池模型以及太阳能获取模型,根据太阳能无人机的气动参数以及太阳能无人机典型的平飞、爬升、下降等运动过程,设计了太阳能无人机能量管理策略,确定了太阳能无人机在不同飞行阶段能量获取、存储与消耗的分配机制及最优飞行参数;利用重力势能储存多余太阳能,进而进行基于高度调整的能量管理,实现对太阳能无人机在不同光照和能量状态下的纵向跟踪控制。同时,结合太阳能无人机横侧向运动的任务要求,通过对太阳能无人机的质点动力学方程进行解耦,建立了基于反馈线性化方法航迹跟踪控制方法,实现太阳能无人机在横侧向的航迹跟踪控制。24 h时间闭合仿真表明,该方法可满足储能电池的最低能量剩余要求以及航迹跟踪控制要求。
关键词:    太阳能无人机    能量管理策略    航迹跟踪    反馈线性化   
Path tracking control of solar-powered UAV based on energy management strategy
GUO Lin1,2, LIU Fei3, LI Jiayu4, HE Pei1, LI Qingdong3, WANG Jiwei1, GUO Yangming1
1. School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China;
2. China Academy of Aerospace Aerodynamics, Beijing 100074, China;
3. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China;
4. Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
To coordinate the conflict between the high-altitude task and long-term energy efficiency of high-altitude long endurance solar UAV, it is one of the core issues of UAV control. A strategy combining the energy management with the route tracking is presented. Firstly, based on the three-dimensional particle motion model, energy storage battery model and solar energy acquisition model for the solar UAV, according to the aerodynamic parameters of the solar UAV and the typical horizontal flight, climb, descent and other motion processes of the solar UAV, the energy management strategy of the solar UAV is designed, and the allocation mechanism and optimal flight parameters of the energy acquisition, storage and consumption of the solar UAV in different flight stages are determined. The surplus solar energy is stored by using the gravitational potential energy, and then the energy management based on height adjustment is carried out to realize the longitudinal tracking control of the solar UAV under different lighting and energy conditions. Then based on the task requirements of the lateral movement of the solar UAV, a track tracking control method based on the feedback linearization method is established by decoupling the particle dynamics equation of the solar UAV, and the track tracking control of the solar UAV in the lateral direction is realized. Finally, a simulation throughout 24 hours is implemented and illustrated the effectiveness of the energy management strategy and route tracking control law.
Key words:    solar-powered UAV    energy management strategy    path tracking    feedback linearization   
收稿日期: 2022-06-24     修回日期:
DOI: 10.1051/jnwpu/20234120409
基金项目: 数据链技术重点实验室开放基金(CLDL-20202208_2)资助
通讯作者: 郭阳明(1978-),西北工业大学教授,主要从事测试与控制、故障诊断与健康管理研究。e-mail:yangming_g@nwpu.edu.cn     Email:yangming_g@nwpu.edu.cn
作者简介: 郭林(1978-),西北工业大学博士研究生,主要从事飞行器设计研究。
相关功能
PDF(1839KB) Free
打印本文
把本文推荐给朋友
作者相关文章
郭林  在本刊中的所有文章
刘飞  在本刊中的所有文章
李佳钰  在本刊中的所有文章
何佩  在本刊中的所有文章
李清东  在本刊中的所有文章
王继维  在本刊中的所有文章
郭阳明  在本刊中的所有文章

参考文献:
[1] GORAJ Z, FRYDRYCHIEWIC A, WINIECKI J. Design concept of a high altitude long-endurance unmanned aerial vehicle[J]. Aircraft Design, 1999, 2:19-44
[2] ALVI O R. Development of solar powered aircraft for multi-purpose application[C]//51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Reston, 2010:3061
[3] WILSON C, NUTBEAN J, BOND I. Aerodynamic and structural design of a solar-powered micro unmanned air vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2000, 214:97-106
[4] 王冠. 某太阳能无人机结构设计与优化[D]. 沈阳:沈阳航空航天大学, 2018 WANG Guan. Structure design and optimization of a solar UAV[D]. Shenyang:Shenyang University of Aeronautics and Astronautics, 2018 (in Chinese)
[5] 马振宇, 祝小平, 周洲. 一种方向舵-螺旋桨联用的全翼式太阳能无人机横航向控制方法[J]. 航空学报, 2018, 39(3):215-225 MA Zhenyu, ZHU Xiaoping, ZHOU Zhou. A lateral-directional control method of combining rudder and propeller for full-wing solar powered UAV[J]. Acta Aerobautic et Astronautic Sinica, 2018, 39(3):215-225 (in Chinese)
[6] 肖伟, 周洲, 祝小平, 等. 柔性太阳能无人机飞行动力学与控制仿真研究[J]. 系统仿真学报, 2014, 26(3):704-709 XIAO Wei, ZHOU Zhou, ZHU Xiaoping, et al. Simulation of flight dynamics and control of HALE solar UAV[J]. Journal of System Simulation, 2014, 26(3):704-709 (in Chinese)
[7] GAO X Z, HOU Z X, GUO Z, et al. Energy management strategy for solar-powered high-altitude long-endurance aircraft[J]. Energy Conversion and Management, 2013, 70:20-30
[8] SUN K W, NI M. Feasibility analysis of hybrid power system used on solar-powered aircraft[J]. Advanced Materials Research, 2014, 860/861/862/863:118-123
[9] 王少奇, 马东立, 杨穆清, 等. 高空太阳能无人机三维航迹优化[J]. 北京航空航天大学学报, 2019, 45(5):936-943 WANG Shaoqi, MA Dongli, YANG Muqing, et al. Three-dimensional optimal path planning for high-altitude solar-powered UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5):936-943 (in Chinese)
[10] COLOZZA A J. Effect of date and location on maximum achievable altitude for a solar powered aircraft[R]. NASA Contractor Report 202326, 1997
[11] GAO X Z, HOU Z X, GUO Z, et al. The equivalence of gravitational potential and rechargeable battery for high-altitude long-endurance solar-powered aircraft on energy storage[J]. Energy Conversion and Management, 2013, 76:986-995
[12] 马东立, 包文卓, 乔宇航. 基于重力储能的太阳能飞机飞行轨迹研究[J]. 航空学报, 2014, 35(2):408-416 MA Dongli, BAO Wenzhuo, QIAO Yuhang. Study of flight path for solar-powered aircraft based on gravity energy reservation[J]. Acta Aerobautic et Astronautic Sinica, 2014, 35(2):408-416 (in Chinese)
[13] SACHS G, LENZ J, HOLZAPFEL F. Unlimited endurance performance of solar UAVs with minimal or zero electric energy storage[C]//AIAA Guidance, Navigation and Control Conference, Chicago, 2009:1-13
[14] KLESH A T, KABAMBA P T. Energy-optimal path planning for solar-powered aircraft in level flight[C]//AIAA Guidance, Navigation and Control Conference and Exhibit, 2007:20-23
[15] KLESH A T, KABAMBA P T. Solar-powered aircraft:energy-optimal path planning and perpetual endurance[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4):1320-1329
[16] SPANGELO S C, GILBERT E, KLESH A, et al. Periodic energy-optimal path planning for solar-powered aircraft[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference, Chicago, 2009
[17] SPANGELO S C, GILBERT E. Power optimization of solar-powered aircraft with specified closed ground tracks[J]. Journal of Aircraft, 2012, 50(1):232-238
[18] DAI R, LEE U, HOSSEINI S, et al. Optimal path planning for solar-powered UAVs based on unit quaternions[C]//The 51st IEEE Conference on Decision and Control, Hawaii, 2012:3104-3109
[19] DAI R. Path planning of solar-powered unmanned aerial vehicles at low altitude[C]//IEEE 56th International Midwest Symposiumon on Circuits and Systems, Columbos, 2013:693-696
[20] 吴健发, 王宏伦, 黄宇. 大跨时空任务背景下的太阳能无人机任务规划技术研究进展[J]. 航空学报,2020,41(3):623414 WU Jianfa, WANG Honglun, HUANG Yu. Research development of solar powered UAV mission planning technology in large-scale time and space spans[J]. Acta Aeronautical et Astronautical Sonica, 2020, 41(3):623414 (in Chinese)
[21] HOSSEINI S, DAI R, MESBAHI M. Optimal path planning and power allocation for a long endurance solar-powered UAV[C]//American Control Conference, Washington, 2013:2588-2593
[22] SACHSG, LENZ J, HOLZAPFEL F. Unlimited endurance performance of solar UAVs with minimal or zero electrical energy storage[C]//AIAA Guidance, Navigation and Control Conference, Reston, 2009:6013