论文:2023,Vol:41,Issue(2):338-343
引用本文:
李晋刚, 何叶, 袁仕俊, 乔大勇, 于得水, 李智源. 静电MEMS微镜谐振扭转角轨迹正弦估计的偏差研究[J]. 西北工业大学学报
LI Jingang, HE Ye, YUAN Shijun, QIAO Dayong, YU Deshui, LI Zhiyuan. Study on sinusoidal estimation deviation of electrostatic actuated MEMS mirror torsion angle[J]. Journal of Northwestern Polytechnical University

静电MEMS微镜谐振扭转角轨迹正弦估计的偏差研究
李晋刚1, 何叶2, 袁仕俊2, 乔大勇2, 于得水1, 李智源1
1. 中移物联网有限公司, 重庆 401121;
2. 西北工业大学 空天微纳系统教育部重点实验室, 陕西 西安 710072
摘要:
静电MEMS微镜扭转角实时获取通常是通过测量出微镜的谐振幅值和相位,按照正弦关系去估计任意时刻的扭转角数值,但关于这种正弦轨迹的假设存在多大的偏差的相关报道很少。使用显微激光多普勒方法,对C1100型MEMS微镜在不同驱动频率和驱动电压下的真实谐振扭转角轨迹进行了测量,并对比了真实轨迹和用正弦曲线拟合轨迹的偏差。结果证明,方波驱动下的MEMS微镜,其真实轨迹和正弦拟合轨迹并不完全符合,存在随扭转角振幅增大而增大的偏差。通过对真实轨迹时域信号进行快速傅里叶变换和频域分析,可以证明偏差存在的主要原因是实测轨迹除了有频率为驱动方波频率1/2倍的正弦信号以外,还叠加了频率为驱动方波频率1倍和3/2倍等高频正弦信号。研究结果表明,按照正弦曲线来估计光学角的方法仅适用于光学扫描角精度要求低于0.1°的场景。
关键词:    MEMS微镜    激光多普勒    扭转轨迹   
Study on sinusoidal estimation deviation of electrostatic actuated MEMS mirror torsion angle
LI Jingang1, HE Ye2, YUAN Shijun2, QIAO Dayong2, YU Deshui1, LI Zhiyuan1
1. China Mobile IoT Company Limited, Chongqing 401121, China;
2. Ministry of Education Key Lab of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Electrostatic MEMS micromirrors usually work in resonant state to obtain large amplitude of torsion angle. The real-time prediction of MEMS micromirror torsion angle is calculated according to the measured resonant amplitude and phase under the assumption that the relationship between the torsion angle and time is sinusoidal. However, there are few reports on the deviation of this torsion angle predication based on sinusoidal assumption. In this paper, the real resonant torsion trajectory of C1100 MEMS micromirror under different driving frequencies and voltages is measured by using microscopic laser Doppler method, and the deviation between the real trajectory and the trajectory fitted by sinusoidal curve is compared. The results show that the real trajectory of the MEMS micromirror driven by square wave is not completely consistent with the sinusoidal estimation, and the deviation increases with the increase of the torsional angle amplitude. By obtaining the frequency domain components of the torsion angle signal using FFT method, the main reason of this prediction deviation is due to composition of harmonic signals on base frequency signal. The research results reveal that the sinusoidal assumption method is only suitable for situations when the optical angle accuracy is less than 0.1�.
Key words:    MEMS micromirror    laser Doppler    scanning trajectory   
收稿日期: 2022-06-22     修回日期:
DOI: 10.1051/jnwpu/20234120338
基金项目: 国家自然科学基金企业联合基金重点支持项目(U21B2035)资助
通讯作者: 乔大勇(1977-),西北工业大学教授,主要从事光学微机电系统研究。e-mail:dyqiao@nwpu.edu.cn     Email:dyqiao@nwpu.edu.cn
作者简介: 李晋刚(1973-),中移物联网有限公司高级工程师,主要从事光电子传感应用技术研究。
相关功能
PDF(2046KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李晋刚  在本刊中的所有文章
何叶  在本刊中的所有文章
袁仕俊  在本刊中的所有文章
乔大勇  在本刊中的所有文章
于得水  在本刊中的所有文章
李智源  在本刊中的所有文章

参考文献:
[1] HOLMSTRÖM S T S, BARAN U, UREY H. MEMS laser scanners:a review[J]. Journal of Microelectromechanical Systems, 2014, 23(2):259-275
[2] BRUNNER D, YOO H W, SCHITTER G. Linear modeling and control of comb-actuated resonant MEMS mirror with nonlinear dynamics[J]. IEEE Trans on Industrial Electronics, 2020, 68(4):3315-3323
[3] LIU T, PAN T, WANG P, et al. Scanning optimization of an electrothermally-actuated MEMS mirror for applications in optical coherence tomography endoscopy[J]. Sensors and Actuators A:Physical, 2022, 335:113377
[4] JIANG B, PENG M, LIU Y, et al. The fabrication of 2D micromirror with large electromagnetic driving forces[J]. Sensors and Actuators A:Physical, 2019, 286:163-168
[5] GU-STOPPEL S, LISEC T, FICHTNER S, et al. A highly linear piezoelectric quasi-static MEMS mirror with mechanical tilt angles of larger than 10[C]//MOEMS and Miniaturized Systems XVIII. SPIE, 2019, 10931:1093102
[6] SCHWARZ F, SENGER F, ALBERS J, et al. Resonant 1D MEMS mirror with a total optical scan angle of 180° for automotive LiDAR[C]//Conference on MOEMS and Miniaturized Systems, 2020:46-62
[7] YANG D, QIAO D, XIA C. Curved light surface model for calibration of a structured light 3D modeling system based on striped patterns[J]. Optics Express, 2020, 28(22):33240-33253
[8] SEO Y H, HWANG K, KIM H, et al. Scanning MEMS mirror for high definition and high frame rate Lissajous patterns[J]. Micromachines, 2019, 10(1):67
[9] PARK S, WAKELIN M, MALEA D, et al. Low-power, small-form-factor angle sensing circuit for an electrostatic, quasi-static MEMS mirror in AR applications[C]//Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality(AR,VR,MR)Ⅲ, SPIE, 2022
[10] YOO H W, BRUNNER D, THURNER T, et al. MEMS test bench and its uncertainty analysis for evaluation of MEMS mirrors[J]. IFAC-PapersOnLine, 2019, 52(15):49-54
[11] TORTSCHANOFF A, LENZHOFER M, FRANK A, et al. Position encoding and phase control of resonant MOEMS mirrors[J]. Sensors and Actuators A:Physical, 2010, 162(2):235-240
[12] PHAM D D, SINGH R P, YAN D L, et al. Position sensing and electrostatic actuation circuits for 2-D scanning MEMS micromirror[C]//2011 Defense Science Research Conference and Expo, 2011:1-4