论文:2023,Vol:41,Issue(2):274-281
引用本文:
谈人玮, 杨涓, 牟浩, 吴先明. 氮工质ECRIT离子源性能计算与实验研究[J]. 西北工业大学学报
TAN Renwei, YANG Juan, MOU Hao, WU Xianming. Computational and experimental research on the performance of ECRIT ion source with nitrogen propellant[J]. Journal of Northwestern Polytechnical University

氮工质ECRIT离子源性能计算与实验研究
谈人玮1, 杨涓1, 牟浩1, 吴先明2
1. 西北工业大学 航天学院, 陕西 西安 710072;
2. 兰州空间技术物理研究所, 甘肃 兰州 730000
摘要:
2 cm电子回旋共振离子推力器(electron cyclotron resonance ion thruster,ECRIT)具有无热阴极、比冲高等特点,适用于吸气式电推进系统。为了适应低轨道氮氧混合大气成分特点,开展氮工质ECRIT离子源的性能计算与实验研究,是分析ECRIT应用于吸气电推进系统的可行性的重要基础。建立了氮工质2 cm ECRIT离子源的整体模型并计算其性能,再与实验结果相互对比,分析两者差别。研究结果表明:①当离子源的输入功率为8 W,气体流量为2 ml/min时,离子引出束流和推力的计算与实验结果均达到最大值,引出束流分别为16.2与12.5 mA,推力分别476.6与368 μN。②当输入功率为8 W,气体流量为0.6 ml/min时,比冲的计算与实验结果为2 095.8与1 855.6 s,均达到最大值,离子引出束流、推力和比冲的计算与实验结果的相对误差变化范围均为2%~32%。③当计算采用的输入功率为8 W,气体流量为1 ml/min,实验采用的输入功率为8 W,气体流量为0.8 ml/min时,离子源都处于最优工作状态,此时推进剂利用效率较高,分别为17.8%和16.2%;离子能量损耗较低,分别为443.9和596.2 W/A。
关键词:    吸气式电推进    微型ECR离子推力器    整体模型   
Computational and experimental research on the performance of ECRIT ion source with nitrogen propellant
TAN Renwei1, YANG Juan1, MOU Hao1, WU Xianming2
1. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Lanzhou Institute of Physics, Lanzhou 730000, China
Abstract:
Electron cyclotron resonance ion thruster (ECRIT) with a diameter of 2 cm has the characteristics of no hot cathode and high specific impulse, which is suitable for the air-breathing electric propulsion system. In order to adapt to the atmospheric composition characteristics of nitrogen and oxygen in low orbit, the computational and experimental research on the performance of the ECRIT ion sourse with nitrogen propellant is an important basis for analyzing the feasibility of applying ECRIT to the air-breathing electric propulsion system. In this paper, the global model of the nitrogen ECRIT ion source with a diameter of 2 cm is established to calculate its performance. Then, the computational results are compared with the experimental results to analyze the difference. The research results show that when the input power of the ion source is 8 W and the gas flow rate is 2 ml/min, the computational and experimental results of the extracted ion beam current and thrust reach the maximum with the extracted beam current of 16.2 and 12.5 mA and the thrust of 476.6 and 368 μN, respectively. When the input power is 8 W and the gas flow rate is 0.6 ml/min, the computational and experimental results of the specific impulse are 2 095.8 and 1 855.6 s, both reaching the maximum value. The relative errors between the computational and experimental results of the extracted ion beam current, thrust and specific impulse all range from 2% to 32%. When the input power and gas flow rate used are 8 W and 1 ml/min in calculation, and 8 W and 0.8 ml/min in experiment, the ion source is on the optimal operating state. At this situation, the computational and experimental propellant utilization efficiencies with 17.8% and 16.2% respectively are high, and the ion energy loss with 443.9 and 596.2 W/A respectively is low.
Key words:    air-breathing electric propulsion    miniature ECR ion thruster    global model   
收稿日期: 2022-06-08     修回日期:
DOI: 10.1051/jnwpu/20234120274
基金项目: 国家自然科学基金(11875222)资助
通讯作者: 杨涓(1964-),西北工业大学教授,主要从事空间电推进研究。e-mail:yangjuan@nwpu.edu.cn     Email:yangjuan@nwpu.edu.cn
作者简介: 谈人玮(1999-),西北工业大学硕士研究生,主要从事空间电推进研究。
相关功能
PDF(2141KB) Free
打印本文
把本文推荐给朋友
作者相关文章
谈人玮  在本刊中的所有文章
杨涓  在本刊中的所有文章
牟浩  在本刊中的所有文章
吴先明  在本刊中的所有文章

参考文献:
[1] SERGE B, GIANLUCA C, RICCARDO A, et al. Conceptual design of an air-breathing electric propulsion system[C]//34th International Electric Propulsion Conference, 2015:271-284
[2] JACKSON S W, MARSHALL R. Conceptual design of an air-breathing electric thruster for cubesat applications[J]. Journal of Spacecraft and Rockets, 2018, 55(3):632-639
[3] HU P, SHEN Y, YAO Z, et al. Study of multi-cusped plasma thruster applied to air-breathing electric propulsion[J]. Vacuum, 2021, 190:110275-110281
[4] TSUKIZAKI R, ISE T, KOIZUMI H, et al. Thrust enhancement of a microwave ion thruster[J]. Journal of Propulsion and Power, 2014, 30(5):1383-1389
[5] KOIZUMI H, KUNINAKA H. Performance of the miniature and low power microwave discharge ion engine μ1[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2010:6617-6623
[6] NAKAGAWA Y, KOIZUMI H, NAITO Y, et al. Water and xenon ECR ion thruster-comparison in global model and experiment[J]. Plasma Sources Science and Technology, 2020, 29(10):105003-105020
[7] 王与权, 杨涓, 金逸舟, 等. Geobel模型的ECRIT离子源性能计算分析[J]. 机械科学与技术, 2017, 36(5):749-754 WANG Yuquan, YANG Juan, JIN Yizhou, et al. Calculation and analysis of ECRIT ion source performance based on Geobel model[J].Mechanical Science and Technology for Aerospace Engineering, 2017, 36(5):749-754 (in Chinese)
[8] 夏旭, 杨涓, 金逸舟, 等. 磁路和天线位置对2 cm电子回旋共振离子推力器性能影响的实验研究[J]. 物理学报, 2019, 68(23):230-240 XIA Xu, YANG Juan, JIN Yizhou, et al. Experimental study on the effect of magnetic circuit and antenna position on the performance of 2 cm electron cyclotron resonance ion thruster[J]. Acta Physica Sinica,2019, 68(23):230-240 (in Chinese)
[9] 黄益智. 氙工质微推力ECR离子推力器实验研究[D]. 西安:西北工业大学, 2018 HUANG Yizhi. Experimental study on xenon working medium micro-thrust ECR ion thruster[D]. Xi'an:Northwestern Polytechnical University, 2018 (in Chinese)
[10] GRONDEIN P, LAFLEUR T, CHABERT P, et al. Global model of an iodine gridded plasma thruster[J]. Physics of Plasmas, 2016, 23(3):033514-033523
[11] HURLBATT A, GIBSON A R, SCHRÖTER S, et al. Concepts, capabilities, and limitations of global models:a review[J]. Plasma Processes and Polymers, 2017, 14(1/2):1600138-1600158
[12] LIEBERMAN M A, LICHTENBERG A J. Principles of plasma discharges and materials processing[M]. New Jersey:John Wiley & Sons, 2005
[13] DAN M G, IRA K. Fundamentals of electric propulsion:Ion and hall thrusters[M]. New Jersey:John Wiley & Sons, 2008
[14] HAGELAAR G J M, PITCHFORD L C. Solving the boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sources Science and Technology, 2005, 14(4):722-733
[15] HIGURASHI Y, OHNISHI J, NAKAGAWA T, et al. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz[J]. Review of Scientific Instruments, 2012, 83(2):02A308-02A311
[16] XIA X, YANG J, JIN Y Z, et al. The influence of magnetic circuit and operating parameters on the plasma property of 2 cm ECRIT ion source[J]. Vacuum, 2020, 179:109517-109523
[17] BOSI F, TREZZOLANI F, LUCCA FABRIS A, et al. Modelling and optimization of electrodeless helicon plasma thruster with different propellants[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2014:3404-3420
[18] PITCHFORD L, BORDAGE M C, HAGELAAR G, et al. Comparisons of sets of electron-neutral scattering cross sections and calculated swarm parameters in O2[J]. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 2012, 93(5):580-585
[19] XIA X, YANG J, FU Y L, et al. Numerical simulation of influence of magnetic field on plasma characteristics and surface current of ion source of 2 cm electron cyclotron resonance ion thruster[J]. Acta Physica Sinica, 2021, 70 (7):075204-075211
[20] 王与权, 陈晓龙, 杨涓. 10厘米ECR离子推力器变推力性能计算评估[J]. 西北工业大学学报, 2017, 35(3):448-454 WANG Yuquan, CHEN Xiaolong, YANG Juan. Calculation evaluation of variable thrust performance of 10 cm ECR ion thruster[J].Journal of northwestern polytechnical university, 2017, 35(3), 448-454 (in Chinese)
[21] JACKSON S W. Design of an air-breathing electric thruster for CubeSat applications[D]. Boulder:University of Colorado, 2017