论文:2023,Vol:41,Issue(2):253-263
引用本文:
刘磊, 腾达, 冯蕴雯. 基于协同智能移动Kriging的襟翼偏角可靠性分析[J]. 西北工业大学学报
LIU Lei, TENG Da, FENG Yunwen. Reliability analysis of flap deflection angle based on collaborative intelligent moving Kriging model[J]. Journal of Northwestern Polytechnical University

基于协同智能移动Kriging的襟翼偏角可靠性分析
刘磊1, 腾达2,3, 冯蕴雯2,3
1. 航空工业第一飞机设计研究院, 陕西 西安 710089;
2. 西北工业大学 航空学院, 陕西 西安 710072;
3. 西北工业大学 可靠性与运行支持工程研究所, 陕西 西安 710072
摘要:
为了有效开展民机襟翼偏角可靠性监测,结合快速存取记录器(quick access recorder,QAR)数据,基于Kriging模型,引入分解协调策略、平衡器优化(equilibrium optimizer,EO)算法和移动最小二乘(moving least square,MLS),提出了一种基于协同智能移动Kriging(collaborative intelligent moving Kriging,CIMK)方法。其中,分解协调策略用于处理襟翼左右偏角之间的关系,MLS用于选取有效建模样本并实现Kriging模型待定系数求解,EO算法用于确定MLS最优的紧支撑域半径。针对襟翼左右不对称进行故障原因分析,明确QAR数据中影响襟翼偏角的主要特征参数;结合相关影响参数的QAR数据,运用CIMK实现民机襟翼偏角模型(极限状态函数)的构建;基于构建的CIMK模型,通过Monte Carlo抽样方法进行民机襟翼偏角可靠性及影响性分析;以某型国产民机襟翼偏角为例,对所提出的方法进行可行性分析。研究结果表明:当襟翼偏角为告警许用值3°时,可靠度为0.450 2,影响襟翼偏角的因素重要程度依次为马赫数、左攻角、右攻角等。与RSM、Kriging、SVM和BP-ANN方法对比发现:在建模特性方面,所提方法平均绝对误差精度相对提高了53.02%,51.43%,49.03%和44.04%,平均相对误差精度相对提高了68.36%,66.76%,64.41%和62.64%;建模效率相对于Kriging、SVM和BP-ANN分别提高了50.62%,26.35%和43.01%;在仿真性能方面,当仿真次数为103次时,分析精度分别提高了8.82%,7.25%,6.22%和3.98%。
关键词:    民机    襟翼偏角    可靠性分析    基于协同智能移动Kriging方法    QAR   
Reliability analysis of flap deflection angle based on collaborative intelligent moving Kriging model
LIU Lei1, TENG Da2,3, FENG Yunwen2,3
1. The First Aircraft Research Institute of AVIC, Xi'an 710089, China;
2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
3. Institute of Reliability and Operation Support Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
To effectively monitor the reliability of civil aircraft flap deflection angle, combined with the quick access recorder(QAR), the collaborative intelligent moving Kriging(CIMK) method is proposed by absorbing the Kriging model, decomposition and co-ordination strategy, equilibrium optimizer(EO), and moving least square(MLS). Among them, the decomposition coordination strategy is used to deal with the relationship between the flaps left and right deflection angles. MLS is employed to select effective modeling samples and solve the undetermined coefficients of Kriging model. EO method is applied to determine optimizing the local compact support region radius of MLS. Firstly, the fault reason for flap left-right asymmetry is analyzed to clarify the main characteristic parameters in QAR data. Secondly, combined with the QAR data of relevant influencing parameters, the civil aircraft flap deflection model(limit state function) is constructed by using CIMK. Then, the reliability and influence of civil aircraft flap deflection angle are analyzed by Monte Carlo(MC) sampling method. The results show that when the flap deflection angle is 3�, the reliability is 0.450 2, and the important factors affecting the flap deflection angle are Mach number, left angle of attack, right angle of attack, etc. Compared with the response surface method(RSM), Kriging, support vector machine(SVM), and back-propagation-artificial neural network(BP-ANN), the average absolute error accuracy of the proposed method is relative improved by 53.02%,51.43%,49.03%, and 44.04%, the average relative error accuracy is relative improved by 68.36%,66.76%,64.41%, and 62.64%, and the modeling efficiency is relative improved by 50.62%,26.35%, and 43.01% respectively compared with Kriging, SVM and BP-ANN. When the number of simulations is 103, the analysis accuracy is relative improved by 8.82%,7.25%,6.22%, and 3.98% respectively.
Key words:    civil aircraft    flap deflection angle    reliability analysis    collaborative intelligent moving Kriging    QAR   
收稿日期: 2022-06-15     修回日期:
DOI: 10.1051/jnwpu/20234120253
通讯作者:     Email:
作者简介: 刘磊(1980-),航空工业第一飞机设计研究院高级工程师,主要从事飞机结构设计研究。e-mail:leizhang151@163.com。
相关功能
PDF(3358KB) Free
打印本文
把本文推荐给朋友
作者相关文章
刘磊  在本刊中的所有文章
腾达  在本刊中的所有文章
冯蕴雯  在本刊中的所有文章

参考文献:
[1] ZHOU C, CHANG Q, ZHAO H, et al. Fault tree analysis with interval uncertainty:a case study of the aircraft flap mechanism[J]. IEEE Trans on Reliability, 2020, 99:1-13
[2] 周长聪, 常琦, 周春苹, 等. 基于非概率模型的飞机襟翼故障树分析[J]. 清华大学学报, 2021, 61(6):636-642 ZHOU Changcong, CHANG Qi, ZHOU Chunping, et al. Fault tree analysis of an aircraft flap systembased on a non-probability model[J]. Journal of Tsinghua University, 2021, 61(6):636-642 (in Chinese)
[3] CUI L, LU Z, HAO W. Importance analysis of the aircraft flap mechanism movement failure[J]. Journal of Aircraft, 2011, 48(2):606-611
[4] 孟巍. EMB145襟翼系统的故障分析[J]. 航空维修与工程, 2007, 1(1):51 MENG Wei. Brief talks on the flap system of EMB145 regional jet airplanes[J]. Aviation Maintenance & Engineering, 2007, 1(1):51 (in Chinese)
[5] BORELLO L, VILLERO G, DALLA VEDOVA M. New asymmetry monitoring techniques:effects on attitude control[J]. Aerospace Science and Technology, 2009, 13(8):475-487
[6] 左鹏. 波音737NG飞机虚假后缘襟翼不对称故障的分析与预防[J]. 航空维修与工程, 2019(11):78-80 ZUO Peng. Analysis and prevention of B737NG aircraft false trailing edge flap asymmetry[J]. Aviation Maintenance & Engineering, 2019(11):78-80 (in Chinese)
[7] 王牧天. 737NG飞机后缘襟翼不对称关断故障调查及预防措施[J]. 中国民航飞行学院学报, 2019, 30(6):41-43 WANG Mutian. Briefings of 737NG flap asymmetry shutdown fault and prevention measures[J]. Journal of Civil Aviation Flight University of China, 2019, 30(6):41-43 (in Chinese)
[8] 张雄飞. 基于QAR数据的飞机襟缝翼收放故障诊断研究[D]. 天津:中国民航大学, 2020 ZHANG Xiongfei. Research on fault diagnosis of retraction and extension of aircraft flap and slat based on QAR data[D]. Tianjin:Civil Aviation University of China, 2020 (in Chinese)
[9] 马超, 张雄飞, 徐建新. 基于蒙特卡洛方法的飞机襟翼不对称风险预测[J]. 交通信息与安全, 2020, 38(3):24-31 MA Chao, ZHANG Xiongfei, XU Jianxin. A risk prediction of aircraft flap asymmetry based on Monte Carlo method[J]. Journal of Transport Information and Safety, 2020, 38(3):24-31 (in Chinese)
[10] 赵洪利, 刘宇文. 基于蒙特卡罗模拟的航空发动机故障风险预测[J]. 北京航空航天大学学报, 2015, 41(3):545-550 ZHAO Hongli, LIU Yuwen. Forecasting for aero-engine failure risk based on Monte Carlo simulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(3):545-550
[11] 朱晓炜, 赵红华, 苟俊哲, 等. 波音737NG机队后缘襟翼不对称监控项目的开发[J]. 航空维修与工程, 2019(1):52-54 ZHU Xiaowei, ZHAO Honghua, GOU Junzhe, et al. Research on performance predictive monitoring of B737NG aircrafttrailing edge flap disagree[J]. Aviation Maintenance & Engineering, 2019(1):52-54 (in Chinese)
[12] 贾宝惠, 廖文辉, 卢翔. 非概率响应面法在起落架结构安全性评估中的应用[J]. 安全与环境学报, 2021, 21(3):1005-1011 JIA Baohui, LIAO Wenhui, LU Xiang. Safety analysis for the landing gear structure on the basis of the non-probabilistic reliability theory[J]. Journal of Safety and Environment, 2021, 21(3):1005-1011 (in Chinese)
[13] KESHTEGAR B, BAGHERI M, FEI C W, et al. Multi-extremum-modified response basis model for nonlinear response prediction of dynamic turbine blisk[J]. Engineering with Computers, 2021, 38:1243-1254
[14] 马小骏, 任淑红, 左洪福, 等. 基于LS-SVM算法和性能可靠性的航空发动机在翼寿命预测方法[J]. 交通运输工程学报, 2015, 15(3):92-100 MA Xiaojun, REN Shuhong, ZUO Hongfu, et al. Prediction method of aero-engine life on wing based on LS-SVM algorithm and performance reliability[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3):92-100 (in Chinese)
[15] CHEN J Y, FENG Y W, TENG D, et al. Support vector machine-based similarity selection method for structural transient reliability analysis[J]. Reliability Engineering & System Safety, 2022, 223:108513
[16] ZHOU D, ZHUANG X, ZUO H F. A hybrid deep neural network based on multi-time window convolutional bidirectional LSTM for civil aircraft APU hazard identification[J]. Chinese Journal of Aeronautics, 2022, 35(4):344-361
[17] 冯蕴雯, 潘维煌, 刘佳奇, 等. 基于机器学习的飞机动力装置运行可靠性[J]. 航空学报, 2021, 42(4):394-404 FENG Yunwen, PAN Weihuang, LIU Jiaqi, et al. Operational reliability of aircraft power plant based on machine learning[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):394-404 (in Chinese)
[18] 刘佳奇, 冯蕴雯, 路成, 等. 基于智能神经网络的航空发动机运行安全分析[J]. 航空学报, 2022, 43(9):136-147 LIU Jiaqi, FENG Yunwen, LU Cheng, et al. Safety analysis of aeroengine operation based on intelligent neural network[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9):136-147 (in Chinese)
[19] LU C, FENG Y W, LIEM R P, et al. Improved Kriging with extremum response surface method for structural dynamic reliability and sensitivity analyses[J]. Aerospace Science and Technology, 2018, 76:164-175
[20] TENG D, FENG Y, LU C, et al. Novel Kriging-based decomposed-coordinated approach for estimating the clearance reliability of assembled structures[J]. Computer Modeling in Engineering & Sciences, 2021, 129(2):1029-1049
[21] 韦益夫, KAWAMURA Yasumi, 王德禹. 改进移动最小二乘法及其在结构可靠性分析中的应用[J]. 上海交通大学学报, 2018, 52(4):455-460 WEI Yifu, KAWAMURA Yasumi, WANG Deyu. An improved moving least square method and application in structural reliability analysis[J]. Journal of Shanghai Jiaotong University, 2018, 52(4):455-460 (in Chinese)
[22] FEI C W, LU C, LIEM R P. Decomposed-coordinated surrogate modeling strategy for compound function approximation in a turbine-blisk reliability evaluation[J]. Aerospace Science and Technology, 2019, 95:105466
[23] LI X. Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces[J]. Applied Numerical Mathematics, 2016, 99(1):77-97
[24] TENG D, FENG Y W, CHEN J Y, et al. Structural dynamic reliability analysis:review and prospects[J]. International Journal of Structural Integrity, 2022, 13(5):753-783
[25] ZHAN D, XING H. A fast Kriging-assisted evolutionary algorithm based on incremental learning[J]. IEEE Trans on Evolutionary Computation, 2021, 25(5):941-955
[26] ZHAI X, FEI C W, CHOY Y S, et al. A stochastic model updating strategy-based improved response surface model and advanced Monte Carlo simulation[J]. Mechanical Systems and Signal Processing, 2017, 82:323-338
[27] FARAMARZI A, HEIDARINEJAD M, STEPHENS B, et al. Equilibrium optimizer:a novel optimization algorithm[J]. Knowledge-Based Systems, 2020, 191:105190
[28] FEI C W, LI H, LU C, et al. Vectorial surrogate modeling method for multi-objective reliability design[J]. Applied Mathematical Modelling, 2022, 109:1-20
[29] TENG D, FENG Y W, CHEN J Y. Intelligent moving extremum weighted surrogate modeling framework for dynamic reliability estimation of complex structures[J]. Engineering Failure Analysis, 2022, 138:106364