论文:2023,Vol:41,Issue(1):180-187
引用本文:
杜江山, 黄铁球, 王开灏. 重复载荷下软土承压模型的计算方法研究[J]. 西北工业大学学报
DU Jiangshan, HUANG Tieqiu, WANG Kaihao. A calculation method of soft soil pressure bearing mathematical model under repeated load[J]. Journal of Northwestern Polytechnical University

重复载荷下软土承压模型的计算方法研究
杜江山, 黄铁球, 王开灏
北京交通大学 机械与电子控制工程学院, 北京 100044
摘要:
对重复法向载荷下的软土承压模型进行数学建模及程序实现,求解重复加载下软土的压力沉陷关系。以沉陷量、接触面积及加载次数为自变量,土壤变形力为因变量,推导任意位置土壤变形力的微积分方程。沿沉陷方向将土壤分段离散,施加对应分段的分段承载系数,并在卸载-加载期间,给出对应的稳定点计算公式和土壤反弹线刚度,编制松软土壤的载荷沉陷程序。将土壤刚度值代入微积分方程,利用C/C++语言对Adams进行二次开发,获得载荷沉陷曲线。在软土地形上,利用直径为6,8,10 cm的3种平板,实施压板贯入试验获得对应的压力-沉陷曲线,模型的仿真与试验结果误差不超过10%。
关键词:    重复加载    计算模型    数学建模    载荷-沉陷曲线    土壤沉陷   
A calculation method of soft soil pressure bearing mathematical model under repeated load
DU Jiangshan, HUANG Tieqiu, WANG Kaihao
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
Abstract:
The soft soil pressure bearing mathematical model under repeated normal load is established and its program is implemented. The relationship of soft soil between pressure and settlement under repeated load is solved. Taking the settlement volume, contact area and loading times as independent variables and soil deformation force as dependent variables, the calculus equation of soil deformation force at the arbitrary position is deduced. The soil is discretized section by section in the settlement direction, and the bearing coefficient of the corresponding section is applied. During the unloading-loading period, the calculation formulas of the corresponding stable point and the stiffness of the soil rebounding line are given, and the load settlement program of soft soil is compiled. The soil stiffness value is substituted into the calculus equation, and the Adams software is redeveloped with C/C++language to obtain the load settlement curve. On the soft soil terrain, three kinds of flat plates with diameters of 6,8, and 10 cm are used to carry out the pressure penetration test to obtain the corresponding pressure-settlement curve. The error between the simulation and experimental results of the mathematical model is no more than 10%.
Key words:    repeated load    calculation model    mathematical modeling    load-settlement curve    soil settlement   
收稿日期: 2022-04-15     修回日期:
DOI: 10.1051/jnwpu/20234110180
通讯作者: 黄铁球(1971-),北京交通大学副教授,主要从事机械系统动力学研究。e-mail:tqhuang@bjtu.edu.cn     Email:tqhuang@bjtu.edu.cn
作者简介: 杜江山(1996-),北京交通大学硕士研究生,主要从事轮壤接触力学研究。
相关功能
PDF(2308KB) Free
打印本文
把本文推荐给朋友
作者相关文章
杜江山  在本刊中的所有文章
黄铁球  在本刊中的所有文章
王开灏  在本刊中的所有文章

参考文献:
[1] WONG J Y, GARBER M, PRESTON-THOMAS J. Theoretical prediction and experimental substantiation of the ground pressure distribution and tractive performance of tracked vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Transport Engineering, 1984, 198(4):265-285
[2] 郑军强. 六轮摇臂式火星车轮-步复合移动系统及蠕动爬行策略研究[D]. 哈尔滨:哈尔滨工业大学, 2019 ZHENG Junqiang. Research on wheel-step mobile system and wriggling crawl strategy of a six wheeled rocker type mars rover[D]. Harbin:Harbin Institute of Technology, 2019 (in Chinese)
[3] 潘冬, 贾阳, 袁宝峰, 等. 祝融号火星车主动悬架式移动系统设计与验证[J]. 中国科学:技术科学, 2022, 52(2):278-291 PAN Dong, JIA Yang, YUAN Baofeng, et al. Design and verification of the active suspension mobility system of the the Zhurong Mars rover[J]. Scientia Sinca Technologica, 2022, 52:278-291 (in Chinese)
[4] HEIKEN G H, VANIMAN D T, FRENCH B M. Lunar sourcebook:a user's guide to the moon[M]. London:Cambridge University Press, 1991:475-567
[5] 郑永春, 欧阳自远, 王世杰, 等. 月壤的物理和机械性质[J]. 矿物岩石, 2004(4):14-19 ZHENG Yongchun, OUYANG Ziyuan, WANG Shijie, et al. Physical and mechanical properties of punar pegolith[J]. Mineralogy and Petrology, 2004(4):14-19 (in Chinese)
[6] 丁亮. 月/星球车轮地作用地面力学模型及其应用研究[D]. 哈尔滨:哈尔滨工业大学, 2010 DING Liang. Wheel-soil interaction terramechanics for lunar/planetary exploration rovers:modeling and application[D]. Harbin:Harbin Institute of Technology, 2010 (in Chinese)
[7] WONG J, REECE A R. Prediction of rigid wheel performance based on the analysis of soil-wheel stresses. Part Ⅱ:performance of towed rigid wheels[J]. Journal of Terramechanics, 1967, 4(2):7-25
[8] BEKKER M G. Introduction to terrain-vehicle systems. Part Ⅰ:the terrain[D]. Ann Arbor:Universtity of Michigan, 1969
[9] HOLM I C. Multi-pass behaviour of pneumatic tires[J]. Journal of Terramechanics, 1969, 6(3):47-71
[10] 黄祖永. 地面车辆原理[M]4版. 北京:机械工业出版社, 2018 WONG Joyung. Theory of ground vehicles[M]4th ed. Beijing:China Machine Press,2018 (in Chinese)
[11] HE R, SANDU C, MOUSAVI H, et al. Updated standards of the international society for terrain-vehicle systems[J]. Journal of Terramechanics, 2020, 91:185-231
[12] SALMAN N D, KISS P. A study of pressure-sinkage relationship used in a tyre-terrain interaction[J]. International Journal of Engineering and Management Sciences, 2019, 4(1):186-199
[13] SENATORE C, SANDU C. Off-road tire modeling and the multi-pass effect for vehicle dynamics simulation[J]. Journal of Terramechanics, 2011, 48(4):265-276
[14] AZIMI A. Wheel-soil interaction modelling for rover simulation and analysis[D]. Montreal:McGill University, 2014
[15] GHOTBI B, GONZÁLEZ F, KÖVECSES J, et al. Mobility evaluation of wheeled robots on soft terrain:effect of internal force distribution[J]. Mechanism and Machine Theory, 2016, 100:259-282
[16] 张博文, 滕宝毅, 黄铁球. 星球车导航与动力学联合仿真平台设计研究[J]. 西北工业大学学报, 2019, 37(6):1184-1190 ZHANG Bowen, TENG Baoyi, HUANG Tieqiu. Design and research co-simulation platform of navigation and dynamics on planetary rovers[J]. Journal of Northwestern Polytechnical University, 2019, 37(6):1184-1190 (in Chinese)